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Abstract
Ontologies rely on a vast ecosystem of software tools, especially the description logic reasoners. Yet, tool
developers and maintainers have little support to ensure tool reliability. This extended abstract reports on
two testing studies on EL reasoners, summarizing results from two approaches presented at ISSRE’24 [1],
ESWC’25 [2] and preliminary results building on this work [3]. We demonstrate how recent advances in
test case generation for highly structured and constrained inputs can support software developers in the
semantic web field. We develop input generators for the OWL EL profile, and report on 23 bugs we found
in HermiT, ELK and Pellet, as well as the EL profile checker of the OWL-API, all using automated testing.
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1. Introduction

Motivation. Ontologies are used in business-critical applications and are supported by a rich
ecosystem of standards, technologies and software tools [4]. Nevertheless, quality considerations
are mostly concerned with data or ontology quality [5, 6], and rarely consider the software tools
that underlie the application. However, only few investigations into reliability of the software
ecosystem surrounding ontologies have been conducted, which diminishes confidence in their
results—confidence that is critical especially if ontologies are used to improve confidence in an
overall application, e.g., to counteract gaps or hallucinations in neuro-symbolic AI [7, 8]. In the
related field of SMT-solvers, testing is an active area of research [9, 10, 11, 12]. Testing tools
have found and documented thousands of bugs in mature SMT-solvers. In this work we present
the first results of applying testing techniques to EL reasoners, published at ESWC’25 [2], and
extended results based on work published at ISSRE’24 [1] and submitted to a journal [3].

Overview. We tested the solvers HermiT (v.1.4.5.51) [13], Pellet [14] (using its Java binding
Openllet, v.2.6.5), and ELK (v.0.6.0) [15]. These reasoners were selected as they are (a) openly
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available and (b) preinstalled with Protégé [16], which is still the most widely used ontology
modelling tool. Only ELK is under active maintenance. In the following, when we refer to the
reasoners, we refer to the respective version listed above.

There were two testing campaigns, both based on differential testing [17]: We generate
(semi)random ontologies, give them as inputs to all three reasoners, and consider it an anomaly
if one reasoner disagrees with the results of the others, or throws an exception. We tested two
capabilites: (1) We checked for consistency of the input ontology, and (2) we checked for the
inference of all axioms of the following types: SubClass, DisjointClasses, EquivalentClasses,
ClassAssertion, PropertyAssertion, SubObjectProp, SubDataProp, EquivalentObjectProp, Equiv-
alentDataProp, as well as characteristics of object and data properties, e.g. functionaliy or
symmetry. As the ELK reasoner does not support the inference of all of these types of axioms,
we only checked if the inferred axioms of ELK are a subset of the axioms inferred by the other
reasoners.

Both campaigns also considered other tools, we only report on those results related to the
reasoner. The full description of the bugs can be found in the original papers [3, 1, 2].

2. Language-Based Fuzzing Campaign

Approach. In the first campaign [2], we used language-based fuzzing and the ISLa tool [18]:
Language-based fuzzing uses an input grammar and generates random terms that are accepted
by it, possibly constrained by additional conditions on the term.

The generator produces OWL files in functional syntax, which is defined in the specification
of the OWL EL profile [19]. However, we needed to make some adjustments to the grammar.
Firstly, we restrict the grammar to use four different names per category: classes, individuals,
simple object properties, potentially non-simple object properties, data properties, predefined
data types, custom data types, language tags, strings, annotation properties and annotation
values, respectively. This ensures that the names are used multiple times in the ontology.
Secondly, the grammar is modified to encode some of the constraints on the EL profile that are
not contained in the original grammar, e.g., the restrictions on complex roles. We do not encode
all of the constraints, namely that cyclic definitions of properties are forbidden and the global
restrictions on the EL profile [19]. Thus, we also generated test cases that are not in OWL EL,
which the OWL-API profile checker and the ELK reasoner are expected to reject.

Results. The main test run was performed for 10 hours, producing and evaluating 1,557 test
cases. Out of those, 516 test cases contain at least one anomaly. The test cases are manually
classified and we examined at least one test case in each class.

Some classes turn out to not be bugs of the reasoners but rather mirror specific reasoning
limitations of the reasoners. We do not examine unclassified anomalies with very different
behavior of the tools as this indicates the occurrence of several anomalies at the same time,
which we already examine individually in other classes. While investigating the anomalies,
the input files are simplified, i.e. axioms and parts of axioms that do not affect the result are
removed. Classes, individuals and properties are renamed to make the files easier to understand.
This last step also revealed one bug.



Table 1
Bugs from the language-based campaign. Issue refers to the corresponding issue tracker [20, 21, 22].
Legend: S = Soundness, SC = Soundness (consistency), SI = Soundness (inference), C = Completeness,
D = Documentation, E = Exception.

Tool ID Issue Type Summary

Pellet

O1 85 SC Equivalence to bottom property is missing when range of property is empty
O2 87 SI Incorrectly infers asymmetry of property from a single triple
O3 88 SI Incorrect equivalence with bottom class
O4 89 S Renaming of variables leads to change in consistency check
O5 90 SC Ignores language tags when checking for equivalence of literals
O6 91 E Null-pointer exception on invocation
O7 92 SI Incorrectly infers irreflexivity of property from single triple

ELK E1 71 SC Ignores language tags when considering equivalence of literals.

HermiT

H1 — C Missing owl:Thing class assertion of decl. individ. when no class is declared
H2 — D Warning about malformed input missing and computed result has SI issue
H3 — C Functionality of property missing when property range is a singleton
H4 — SI Incorrect sub-object-property relation caused by unrelated subclass axiom
H5 — C Data-property assertion missing when singleton in equivalent-classes axiom
H6 — E Exception when using only rdfs:Literal in data-type intersection

OWL-API
A1 1158 S Forbidden data type is wrongly detected because of incorrect parsing of

string with language tag as rdfs:langString
A2 1159 D Too few arguments are detected because argument-list is interpreted as set
A3 1160 S Defining new data type is incorrectly marked as violation (only use forbidden)

Overall, this testing methodology revealed 14 previously unknown bugs in the reasoners and
1 related bug in the OWL-API. Table 1 provides an overview of these bugs. We found bugs in all
systems that we tested. We reported the bugs in the repositories of the tested tools, except for
HermiT where no bug tracker is publicly available. The detailed reports for those bugs (as well
as all other bugs) can be found in the supplementary material of the original publication [23].
One interesting observation is that most of the found bugs are logical bugs, i.e. bugs that do
not lead to any exception or warning but the computed result is incorrect. Logical bugs are
particularly important to find, as there is no indication of their presence for users of the tools. To
illustrate the kinds of bugs we found, we discuss a few different classes of bugs using examples.

Parsing. The OWL EL profile allows language tags, but the OWL-API parser combines strings
and attached language tags to object of type rdfs:langString. The EL-profile checker of the
OWL-API subsequently rejects the ontology because this data type is forbidden, effectively
forbidding the use of language tags.

Consistency. Four bugs are cases where the consistency of the ontology is not correctly
assesses. We found three such bugs in Pellet/Openllet and one in ELK. The latter (E1 in Table 1)
is shown in Figure 1. The ontology is wrongly classified as inconsistent by ELK: ELK treats the
two strings "s1"@fr and "s1"@en as the same entity, even though they must be treated as different
literals. This leads to the incorrect inference that :B is an empty class and, due to the class
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Prefix(:=<http://www.example.org/reasonerTester#>)
Ontology (

Declaration(Class(:B)) Declaration(Class(:A))
Declaration(DataProperty(:dr)) Declaration(NamedIndividual(:a))
EquivalentClasses( DataHasValue(:dr "s1"@fr) :A :B )
DisjointClasses( DataHasValue(:dr "s1"@en) :A )
ClassAssertion(:B :a))

Figure 1: Consistency bug in ELK (bug E1)

Prefix(:=<http://www.example.org/reasonerTester#>)
Ontology (

Declaration(DataProperty(:dp)) Declaration(NamedIndividual(:a))
EquivalentClasses( ObjectOneOf(:a) DataHasValue(:dp "data") ))

Figure 2: Inference bug: completeness bug in HermiT (bug H5)

assertion ClassAssertion(:B :a), that the ontology is inconsistent.

Soundness of Inference. Five of the bugs are cases where the reasoners infer ax-
ioms that are not entailed by the ontology. These bugs were found in HermiT
and Pellet/Openllet. For one such bug (O4), the ontology contains only one axiom
EquivalentClasses(ObjectHasSelf(:qsim) ObjectOneOf(:d) :C)) and declares an individual :a that is
not mentioned in the axiom. Nevertheless, it is inferred that the axiom ClassAssertion(:C :a) is
entailed by the ontology. Interestingly, changing the name of the declared class, the individuals
or the properties leads to a correct inference, i.e., the bug disappears. We see this puzzling
behavior of Pellet/Openllet for several different inputs.

Completeness of Inference. Three of the bugs are cases where the reasoners do not infer
an axiom. All these bugs were found in HermiT. Figure 2 illustrates H5. The ontology defines
a data property :dp and an individual :a. Furthermore, two classes are the same: (i) the class
containing only the individual :a and (ii) the class of individuals occurring as the subject in an
assertion with the data property :dp and the object "data". One can therefore infer the assertion
DataPropertyAssertion(:dp :a "data") from the ontology. However, HermiT does not infer the
axiom when asked to compute all inferred assertions.

3. Mutation-based Campaign

Approach. In the second campaign [3], we used mutation-based fuzzing. Mutation-based
fuzzing uses seed inputs and generates random terms by applying mutation operators (such as
removing, adding or exchanging a subterm) on the seed repeatedly.

To get representative ontologies as seeds, we collected ontologies from the latest OWL
Reasoner Competition [24]. We selected all ontologies in the EL-profile and then filtered to only
use the ontologies that are smaller than 1MB in file size. This resulted in 307 ontologies that we
used as seeds. Again, we performed a test run for 10h, during which we generated 1991 test cases,



Table 2
Bugs from the mutation-based campaign. Legend is given in Table 1.

Tool ID Issue Type Summary

Pellet

P1 94 E Exception when pre-computating class hierarchy; occurs non-
deterministically

P2 93 C A sub-class axiom is missing from inferred class hierarchy; combination of
reflexive property and existential quantification

P3 97 E Exception when doing pre-computation for class hierarchy
P4 95 E Exception when doing pre-computation for class hierarchy
P5 96 C A sub-class axiom is missing from inferred class hierarchy because sub-typing

of different string data types is not considered

HermiT H0 — E Exception when reasoner is initiated if ontology contains the axiom ⊥ ⊑ ⊤

of which 502 test runs resulted in the occurrence of an anomaly. The used mutation operators
are selected such that they address all allowed features of the EL-profile. The full list of all 55
used mutation operators can be found in the original publication [3]. They target the TBox as
well as the ABox. The used tool is available under https://github.com/smolang/RDFMutate [25].

Results. We found 6 previously unknown bugs in the OWL EL reasoners that we tested. One
of the bugs (P1) only occurs non-deterministically, i.e., not every time the reasoner is called with
the test input. Such bugs are particularly hard to describe. Two of the bugs are completeness
bugs, i.e., the reasoner misses a subclass relation that should be contained in the class hierarchy.
These bugs are especially important to find as there is no warning for the user that the computed
result of the tool is incorrect.

4. Conclusion

Software reliability, or software quality in general, is an underestimated and underappreciated
factor when it comes to ontologies, yet reliability is critical for the acceptance of this technology.
The reported work shows that automated testing can be applied to DL-reasoners and, subse-
quently, should be applied in the future. In particular, it demonstrates that language-based tools
for input generation have reached a stage where they can be set up for RDF and OWL with
little effort. For future work, it remains to investigate further testing techniques, in particular
gray-box fuzzing [26] and other approaches that are building on coverage to estimate how
much of the program or input space has been already tested. It also remains to investigate why
language-based fuzzing was more effective than mutation-based fuzzing.
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