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Abstract
Within the Ontology Based Data Access (OBDA) framework, users can query relational data sources
using an ontology to which the source is linked via declarative mappings. In a world where data sharing
is widespread, ensuring privacy while managing data poses a significant challenge. Controlled Query
Evaluation (CQE) is a privacy preserving query answering framework in the presence of ontologies,
where policies representing confidential information are used to devise suitable censors that enforce data
protection. The integration of CQE within OBDA was recently proposed through the Policy-Protected
OBDA (PPOBDA) framework, which is based on embedding policies into mappings. Such framework is
essentially theoretical, and the effectiveness with which PPOBDA policies are able to capture real-world
privacy requirements has not been assessed so far. In this work, we carry out such an evaluation, utilizing
the well-known MIMIC-III hospital dataset, which recently has been mapped, by adopting the OBDA
framework, to the Fast Healthcare Interoperability Resources (FHIR) ontology. We identify relevant privacy
requirements by analyzing the legal regulations on data sharing expressed in HIPAA of US Federal Law
and GDPR of the EU, show how they can be expressed via PPOBDA policies, and analyze the impact
of these policies on the answers to a set of representative queries. Our analysis exposes both strengths
and weaknesses of the PPOBA framework in relation to these practically relevant privacy regulations.
Furthermore, we perform a performance evaluation of the OBDA framework implemented over the
MIMIC-III dataset via the FHIR ontology, assessing the overhead introduced by the PPOBDA policies
and its implications on such real-world use case.

1. Introduction

Ontology-Based Data Access (OBDA) [1, 2] provides a powerful framework for querying re-
lational data sources using ontologies. It supports user-friendly access to data by allowing
queries over a conceptual vocabulary of ontologies while relying on mappings to translate
these queries to the underlying data. Our work focuses on OBDA systems that use lightweight
description logics, particularly OWL 2 QL. While OBDA offers efficient query answering, it also
raises privacy concerns, as sensitive information can be derived from the data retrieved through
the mappings, combined with the inferences via the ontology axioms.

To address such concerns, Controlled Query Evaluation (CQE) has emerged as a privacy-
preserving mechanism within OBDA [3, 4, 5]. CQE enforces privacy through policies that
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specify which information must be protected, using a censor to filter query answers accordingly.
Building on this, the Policy-Protected OBDA (PPOBDA) framework introduces policies that are
first order denial assertions encoded in mappings, aiming for stronger integration of privacy
and data access [6].

In this work, we explore the application of PPOBDA in the healthcare domain, where privacy
is paramount due to legal and ethical considerations. We reference major regulatory frameworks
such as the Health Insurance Portability and Accountability Act (HIPAA) [7] and the General
Data Protection Regulation (GDPR) [8] to identify key privacy requirements [9] and then use
these requirements to test the relevance of policies expressed in the PPOBDA framework. Our
case study uses the MIMIC-III hospital dataset [10] structured via the OMOP Common Data
Model [11] and mapped to the FHIR ontology [12, 13, 14]. Due to the size and complexity of
FHIR, we apply ontology modularization techniques to manage the execution process.

We present representative PPOBDA policies, analyze their effectiveness in expressing real-
world privacy constraints, and assess limitation particularly in addressing practices like data
de-identification. Our experimental evaluation investigates how privacy policies impact query
results and performance. These findings contribute to understanding how policy-driven privacy
mechanisms can be practically applied in OBDA systems.

Code and resources are available at https://github.com/divyabaura/PPOBDA-policies.

2. Methodology

In this section, we outline the steps undertaken to construct and validate a privacy-aware
Ontology-Based Data Access (OBDA) framework applied to a real-world healthcare dataset.
Data Source and Standardization. We utilize the MIMIC-III clinical dataset[10], a large,
de-identified dataset containing health-related information from ICU patients. To harmonize
the data with existing standards, we employ the open-source mimic-omop ETL tool [15] to
transform MIMIC-III into the Observational Medical Outcomes Partnership Common Data Model
(OMOP CDM), specifically version 5.4. This transformation facilitates the use of standardized
vocabularies from the OHDSI initiative [16].
Ontology Selection and Module Extraction. To align the data with a semantic model, we
adopt the FHIR Ontology [13], which provides an OWL-based formalization of FHIR resources.
Due to its size (over 1,450 classes), we extract a relevant module using the Syntactic Locality
Module Extractor[17] with the STAR method. The seed signature includes essential clinical
concepts such as Patient, Address, and CodeableConcept. This ensures that the extracted
module retains semantic integrity while being computationally tractable.
Metadata Extraction and Integration. We leverage Ontop’s CLI [18] to extract metadata
from the transformed OMOP database. This metadata is represented as a JSON file and includes
schema-level information such as table names, column data types, and foreign key constraints.
It forms the structural bridge between the database and the ontology, enabling OBDA reasoning.
Mapping Specification. We incorporate existing R2RML mappings from Xiao et al. [14],
linking OMOP CDM elements to FHIR RDF representations. These mappings span over 100
data elements across 11 OMOP tables and 11 FHIR classes, and they allow SPARQL queries to
be translated into SQL over the relational schema while respecting the semantics of FHIR.

https://github.com/divyabaura/PPOBDA-policies


System Setup and Execution. We have deployed the OBDA system using Ontop and con-
nected it to a PostgreSQL instance containing the OMOP-transformed MIMIC-III data. The
system supports semantic querying via SPARQL and enforces policy-aware access through the
integration of the PPOBDA framework, which will be detailed in subsequent sections.

3. Legal Analysis and Results

We combine our analysis of how PPOBDA addresses key legal privacy requirements of HIPAA
and GDPR with experimental results on PPOBDA policy enforcement over the MIMIC-III dataset.
To provide an intuitive understanding of how in PPOBDA, policies affect the instances of a class
𝐶 , assume that all denials in the set 𝒫 of policies containing an atom that unifies with 𝐶(𝑥) are
∀𝑥, 𝑦⃗𝑖. (𝐶(𝑥)∧ 𝛼𝑖(𝑥, 𝑦⃗𝑖) → ⊥), for 𝑖 ∈ {1, . . . , 𝑘}. Then, the PPOBDA mapping reformulation
algorithm replaces the atom 𝐶(𝑥) with 𝐶(𝑥)∧

⋀︀
1≤𝑖≤𝑘 ¬∃𝑦⃗𝑖.𝛼𝑖(𝑥, 𝑦⃗𝑖) [19], and such expression

is rewritten w.r.t. the TBox and unfolded w.r.t. the original mappings and incorporated in the
source part of the new mapping assertions, thus expressing the PPOBDA policies.

Protected Health Information (PHI). Under HIPAA, PHI comprises 18 identi-
fiers—demographic, geographic, and medical data that require strict protection [20]. We have
defined within PPOBDA several policies to safeguard PHI by ensuring that identifiable attributes
are concealed. We list here a few meaningful examples, and refer to the GitHub repo for the full
PPOBDA specification:

𝑝1 : ∀𝑥.∀𝑦.∀𝑧.Patient .gender(𝑥, 𝑦) ∧ Patient .address(𝑥, 𝑧) → ⊥
𝑝2 : ∀𝑥.∀𝑦.∀𝑧.MedicationStatement .subject(𝑥, 𝑦) ∧ link(𝑦, 𝑧) → ⊥
𝑝3 : ∀𝑥.∀𝑦.Patient .id(𝑥) ∧ Patient .generalPractitioner(𝑥, 𝑦) → ⊥

Policy 𝑝1 blocks any query combining gender and address; 𝑝2 prohibits linking medication
statements to patient identity; 𝑝3 hides the pairing of patient ID and practitioner assigned to
specific patient. A Limited Data Set (LDS) consists of health information with certain identifiers
removed, reducing the chances of identifying an individual.Embedding 𝑝1 into mapping 𝑀1

satisfies a LDS by only returning patient gender when location_id IS NULL, ensuring address
is never exposed alongside gender.

De-identified Data. HIPAA’s de-identification methods (Expert Determination, Safe Harbor)
rely on transformations (e.g., truncating ZIP codes) that remove the risk of re-identification [21].
Instead, the only effect of the additional negated atoms introduced in mappings through PPOBDA
policies is to filter out entire tuples from the result (when they violate a policy), but these atoms
are not able to induce any transformation on the result, in particular to apply any of the available
de-identification functions (e.g., obfuscation, truncation, anonymization, or generalization).
Therefore, denials are not suited to perform de-identification in the PPOBDA framework.

Right to Erasure (RTE). The Right to Erasure (RTE), defined in Article 17 of the GDPR [22],
allows individuals to request deletion of their personal data under certain conditions. This is
essential for protecting user privacy, especially in data access systems like OBDA. We consider
two approaches to supporting RTE in the OBDA setting:

(1) RTE in PPOBDA. While OBDA systems typically lack control over the underlying data
sources, PPOBDA can simulate erasure by ensuring requested data is excluded from query



results, even if not physically deleted. Upon a user’s RTE request, appropriate denial policies
can be added to censor access to the relevant data. For instance, the following policies can hide
sensitive patient data:

𝑝4 : ∀𝑥.∀𝑦.∀𝑧.Encounter .location(𝑥, 𝑦) ∧ Location.name(𝑦, 𝑧) → ⊥
𝑝5 : ∀𝑥.∀𝑦.∀𝑧.Procedure.code(𝑥, 𝑦) ∧ Procedure.performedDateTime(𝑥, 𝑧) → ⊥
𝑝6 : ∀𝑥.∀𝑦.Patient .id(𝑥) ∧Observation.subject(𝑥, 𝑦) → ⊥

Policies 𝑝4–𝑝6 respectively block results revealing encounter locations, procedure timestamps,
or observation subjects for erased patients. Though the underlying data sources records remain
intact, this method ensures data is functionally inaccessible.

(2) RTE via Ontology-Based Updates. For full RTE compliance, ontology-based updates can be
used to translate high-level deletion requests into source-level deletions [23]. In this approach,
deletions specified at the ontology level are compiled into the minimal necessary changes to
the source database. However, such updates may introduce side-effects. For example, deleting
a patient’s marital status might also remove their name and patient status if both are stored
in the same row of a source table, due to shared mappings. This highlights the complexity of
achieving RTE via physical deletion.

Right to Rectification (RTR). RTR, as defined in Article 16 of the GDPR, grants individuals
the right to request corrections to their personal data if it is inaccurate or incomplete [24]. This
right ensures that data subjects can maintain the accuracy and integrity of their information,
preventing incorrect or outdated records from being used. Similar to RTE, PPOBDA cannot
modify source values or adjust query answers to reflect corrections. Instead, ontology-based
updates [23] can translate rectification requests into source updates, but may produce side-
effects (e.g., changing eligibility facts tied to corrected birth dates). Hence, in general, RTR
compliance is managed similarly to RTE compliance.

Experimental Results. We evaluated PPOBDA on MIMIC-III data (via OMOP CDM and FHIR)
using the six policies 𝑝1–𝑝6 (see above) and 17 queries. For each query and policy, we measured
average execution time (over three runs) and result counts. Our key observations are: (i) Each
policy successfully suppresses results for at least one query, demonstrating precise enforcement
of privacy constraints. (ii) Queries unaffected by a given policy return the same result count and
exhibit comparable execution times to the baseline. (iii) Embedding privacy policies introduces
negligible overhead, indicating that policy-induced filtering does not impede performance.

4. Conclusions and Future Work

We showed that PPOBDA can enforce many HIPAA/GDPR requirements, such as, hiding PHI
combinations and blocking “forgotten” data from query results while remaining efficient. At the
same time, denial assertions as policies cannot perform true de-identification (obfuscation/trun-
cation) or delete/rectify data at the source. To bridge these gaps, we are extending PPOBDA
so that mappings can apply simple transformations (e.g., value obfuscation) and invoking
ontology-based updates to propagate erasure/rectification requests down to the database. These
enhancements aim to achieve full regulatory compliance without sacrificing query performance.
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