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Abstract
The chase is a fundamental algorithm with ubiquitous uses in database theory. Given a database and a
set of existential rules (aka tuple-generating dependencies), it iteratively extends the database to ensure
that the rules are satisfied in a most general way. This process may not terminate, and a major problem
is to decide whether it does. This problem has been studied for many chase variants, which differ by
the conditions under which a rule is applied to extend the database. Surprisingly, the complexity of the
universal termination of the restricted (aka standard) chase is not fully understood. We close this gap by
placing universal restricted chase termination in the analytical hierarchy. This higher hardness is due to
the fairness condition, and we propose an alternative to reduce the hardness of universal termination.
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1. The Problem of Restricted Chase Termination and Fairness

In this extended abstract of [1], we summarise our findings and outline the problem of fairness
for restricted chase termination. We give an overview of the levels of undecidability for various
chase termination problems including our novel results that we obtain for CTKrest

∀ and CTRrest∀ .
The chase is a bottom-up materialisation procedure that computes a universal model (a model

that can be homomorphically embedded into all other models) for a knowledge base (KB),
consisting of an (existential) rule set and a database.

Example 1. Consider the KB 𝒦1 = ⟨Σ, 𝐷⟩ where 𝐷 is the database {Bicycle(𝑏)} and Σ contains:

∀𝑥.Bicycle(𝑥) → ∃𝑦.HasPart(𝑥, 𝑦) ∧ Wheel(𝑦) ∀𝑥, 𝑦 .HasPart(𝑥, 𝑦) → IsPartOf(𝑦 , 𝑥)
∀𝑥.Wheel(𝑥) → ∃𝑦.IsPartOf(𝑥, 𝑦) ∧ Bicycle(𝑦) ∀𝑥, 𝑦 .IsPartOf(𝑥, 𝑦) → HasPart(𝑦 , 𝑥)

Then, {Bicycle(𝑏), HasPart(𝑏, 𝑡), IsPartOf(𝑡, 𝑏), Wheel(𝑡)} is a universal model of 𝒦.
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Figure 1: Three Different Restricted Chase Sequences for the KB 𝒦1 from Example 1

Although there are many variants of the chase, they all implement a similar strategy. Namely,
they start with the database and then, in a step-by-step manner, extend this structure with
new atoms to satisfy the rules in the input rule set in a most general way. Since none of these
variants are guaranteed to terminate (some KBs do not even admit finite universal models), it is
only natural to wonder about their respective halting problems [2, 3, 4, 5, 6, 7]. Despite intensive
efforts, some results have remained open. Specifically, prior research has established tight
bounds for the major classes of chase terminating KBs and rule sets, except for the following:

• The class CTKrest
∀ of all KBs that only admit finite restricted chase sequences.

• The class CTRrest∀ containing a rule set Σ if ⟨Σ, 𝐷⟩ ∈ CTKrest
∀ for every database 𝐷.

Our main contribution is to show that both classes are Π1
1-complete, a surprising result given

that these are significantly harder than the corresponding classes for other chase variants [7].
The restricted chase differs from other variants in that it introduces new terms to satisfy

existential quantifiers in rules only if these are not already satisfied by existing terms. Because
of this, the order of rule applications impacts termination. The KB 𝒦1 from Example 1 admits
both finite and infinite restricted chase sequences; some of these are represented in Fig. 1, where
atoms are numbered to denote the step at which they were introduced.
CTKrest

∀ has been claimed to be recursively enumerable (RE) in [7], probably with the following
procedure in mind: given an input KB, compute all of its restricted chase sequences in parallel,
and halt and accept if all of them are finite. Alas, this strategy does not work as there are
terminating input KBs that admit infinitely many finite sequences that are of increasing length.

Example 2. Consider the KB 𝒦2 = ⟨Σ, 𝐷⟩ where 𝐷 is the database {Real(𝑎), E(𝑎, 𝑐), E(𝑐, 𝑏),
Real(𝑐),E(𝑏, 𝑏), Brake(𝑏)} and Σ is the rule set that contains all of the following:

∀𝑥, 𝑦 , 𝑧.Real(𝑥) ∧ E(𝑥, 𝑦) ∧ Real(𝑦) ∧ Brake(𝑧) → ∃𝑣.E(𝑦 , 𝑣) ∧ E(𝑣 , 𝑧) ∧ Real(𝑣)
∀𝑥.Brake(𝑥) → Real(𝑥)

For any 𝑘 ≥ 1, there is a restricted chase sequence of 𝒦2 that yields the (finite) universal model
𝐷 ∪ {E(𝑐, 𝑡1)} ∪ {E(𝑡𝑖, 𝑡𝑖+1) ∣ 𝑖 < 𝑘} ∪ {E(𝑡𝑖, 𝑏), Real(𝑡𝑖) ∣ 𝑖 ≤ 𝑘} ∪ {Real(𝑏)} of𝒦2. Such a sequence is
obtained by applying the first rule 𝑘 consecutive times and then applying the second one once to
derive Real(𝑏). After this application, the first rule is satisfied and the restricted chase halts.

The KB 𝒦2 in the previous example is in CTKrest
∀ because of fairness. This is a built-in

condition in the definition of all chase variants that guarantees that the chase yields a model
of the KB by requiring that, if a rule is applicable at some point during the computation of a
sequence, then this rule must be eventually satisfied. Hence, the second rule in𝒦2 must sooner
or later be applied in all restricted chase sequences and thus, all such sequences are finite.



KB Rule Set
Sometimes Always Sometimes Always

Oblivious RE-complete [6] RE-complete [3, 5]
Restricted RE-complete [6] Π1

1-complete Π0
2-complete [7] Π1

1-complete
Core RE-complete [6] Π0

2-complete [7]

Table 1
Undecidability status of the main decision problems related to chase termination; the results presented
without citations refer to our main contributions [1].

An issue with fairness is that it is not finitely verifiable, i.e. we cannot see if fairness is violated
after a finite number of steps, intuitively because a necessary rule application might still occur
later. With a stronger condition, e.g., demanding that possible rule applications are performed
in a breadth-first manner, we could detect violations after a finite number of steps. In fact, in [1,
Section 6], we show that such a condition lands CTKrest

∀ in RE by computing chase sequences in
parallel as sketched above.
The KB in Example 2 uses a technique called the emergency brake, initially proposed by

Krötzsch et al. in [8]. The idea is to connect every term in the chase to a special term (the
constant 𝑏 in this example) that is not “Real” and acts as a “Brake”. Eventually, this term
becomes “Real” because of fairness, all existential restrictions are satisfied, and the restricted
chase halts. The emergency brake allows to grow the chase for an arbitrary number of steps
whilst guaranteeing its termination. By activating infinite sequences of emergency brakes, we
emulate the eternal recurrence often displayed by Π1

1-complete problems and thus define the
reductions that lead to our main results.

2. Summary of Levels of Undecidability for Chase Termination

All decision problems related to chase termination are undecidable. However, these are complete
for different classes within the arithmetical and analytical hierarchies, as summarised in Table 1.
For the oblivious chase, application order is irrelevant, therefore CTKobl

∃ = CTKobl
∀ and

CTRobl∃ = CTRobl∀ . For the core chase, by Deutsch et al., CTKcore
∃ = CTKcore

∀ and CTRcore∃ =
CTRcore∀ . To understand why CTKobl

∃ (resp. CTKrest
∃ or CTKcore

∃ ) is recursively enumerable (RE),
consider the following procedure: given some input KB, compute all of its oblivious (resp.
restricted or core) chase sequences in parallel and accept as soon as you find a finite one.
Deutsch et al. proved that CTKrest

∃ is RE-hard. More precisely, they defined a reduction that
takes a machine 𝑀 as input and produces a KB 𝒦 as output such that 𝑀 halts on the empty
word if and only𝒦 is in CTKrest

∃ ; see Theorem 1 in [6].
Deutsch et al. also proved that CTKcore

∃ is RE-hard. More precisely, they showed that checking
if a KB admits a universal model is undecidable; see Theorem 6 in [6]. Moreover, they proved
that the core chase is a procedure that halts and yields a finite universal model for an input KB
if this theory admits one; see Theorem 7 of the same paper. Therefore, the core chase can be
applied as a semi-decision procedure for checking if a KB admits a finite universal model.

Marnette proved that CTRobl∃ is in RE. More precisely, he showed that a rule set Σ is in CTRobl∃



if and only if the KB ⟨Σ, 𝐷⋆
Σ⟩ is in CTKobl

∃ where 𝐷⋆
Σ = {P(⋆, … , ⋆) ∣ P ∈ Preds(Σ)} is the critical

instance and ⋆ is a special fresh constant; see Theorem 2 in [5].
Gogacz and Marcinkowski proved that CTRobl∃ is RE-hard. More precisely, they presented a

reduction that takes a 3-counter machine𝑀 as input and produces a rule set Σ such that𝑀 halts
on 𝜀 if and only if ⟨Σ, 𝐷⋆

Σ⟩ is in CTKobl
∃ ; see Lemma 6 in [3]. Hence, 𝑀 halts on the 𝜀 and only if

Σ is in CTRobl∃ by Theorem 2 in [5]. Furthermore, Bednarczyk et al. showed that this hardness
result holds even over single-head binary rule sets; see Theorem 1.1 in [2].
CTRrest∃ is in Π0

2, since we can give semi-decision procedure when equipped with an oracle
for CTKrest

∃ by iterating over all databases. The argument for CTRcore∃ being in Π0
2 is analogous.

Grahne and Onet proved that CTRrest∃ and CTRcore∃ are Π0
2-hard by reducing from the universal

termination problem of word rewriting systems.

Our Contribution In [1, Section 4], we argue that CTKrest
∀ is Π1

1-complete. This contradicts
Theorem 5.1 in [7], which states that CTKrest

∀ is RE-complete. Specifically, it is claimed that
this theorem follows from results in [6], but the authors of that paper only demonstrate that
CTKrest

∀ is undecidable without proving that it is in RE. Before our completeness result, the
tightest lower bound was proven by Carral et al., who proved that this class is Π0

2-hard; see
Proposition 42 in [4]. We obtain Π1

1-completeness by reduction to and from the following
complete problem based on [9]: Decide if a given non-deterministic Turing machine (NTM)𝑀 is
non-recurring through 𝑞𝑟 on some word 𝑤, i.e., if every non-deterministic run of 𝑀 on 𝑤 features
𝑞𝑟 only finitely often. The high level intuition is that recurrence of 𝑞𝑟 resembles the fairness
condition from the chase. For membership, we compute the chase with a NTM keeping track of
possible rule applications for each step 𝑖 in 𝑅𝑖. We keep a counter 𝑗 and visit 𝑞𝑟 whenever 𝑅𝑗 is
satisfied and increase 𝑗 in this case. For hardness, we construct a rule set based on a given NTM
and enforce termination with the emergency brake technique except in cases where 𝑞𝑟 is visited
recurringly by always creating a new brake when 𝑞𝑟 is visited.
We also show in [1, Section 5] that CTRrest∀ is Π1

1-complete using similar reductions as for
the CTKrest

∀ case. This contradicts Theorem 5.16 in [7], where it is stated that this class is
Π0
2-complete. The error in the upper-bound of this theorem arose from the assumption that

CTKrest
∀ is in RE, which, as previously discussed, is not the case. Regarding the lower bound,

they consider an extended version of this class of rule sets where they allow the inclusion of a
single “denial constraint”; i.e. an implication with an empty head that halts the chase if the body
is satisfied during the computation of a chase sequence. They prove that the always restricted
halting problem for rule sets is Π0

2-hard if one such constraint is allowed. Our results imply
that we do not need to consider such an extension to obtain a higher lower bound.
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