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Due to the expressive power of description logics (DLs), and the complexity of real ontologies,
inferences performed by a DL reasoner are not always easy to understand by end-users, which
motivates a variety of research projects on explaining entailments in DL knowledge bases (KBs).
Such research is usually either concerned with why-questions (“Why is 𝑋 entailed by the KB?”)
or with why not-questions (“Why is 𝑋 not entailed by the KB?”). Approaches for answering
the why-question include justifications (i.e. minimal subsets of the KB that are sufficient for
the entailment [1, 2, 3, 4]), proofs [5], Craig interpolants [6] and universal models [7]. To
answer a why not question, we can use abductive reasoning to determine what is missing in a
KB 𝒦 to derive an observation 𝛼 [8, 9, 10]. Research in this area for DLs encompasses ABox
abduction [11, 12], TBox abduction [13], KB abduction [14] and concept abduction [15], depending
on the type of entailment to be explained.

We are interested on explaining outcomes of instance queries, i.e. explaining entailments
and non-entailments of assertions of the form 𝐶(𝑎). In this context, addressing the why and
why not questions jointly can provide greater clarity than considering them in isolation. To
illustrate this, consider a simplified KB 𝒦 = ⟨𝒯 ,𝒜⟩ for a hiring process:

𝒯 = { Qualified ⊓ ∃publishedAt.Journal ⊑ Interviewed, PostDoc ⊓ ∃leads.Group ⊑ ⊥
∃leads.Group ⊔ ∃hasFunding.⊤ ⊑ Qualified }

𝒜 = { (1) publishedAt(alice, jair), (2) publishedAt(bob, kr), (3) Journal(jair),
(4) leads(alice, cs), (5) Group(cs), (6) hasFunding(alice, corp), (7) PostDoc(bob)}

We can explain why Alice was interviewed with the ABox justification {(1), (3), (4), (5)}.
Using ABox abduction, we can explain why Bob is not interviewed using the hypothesis:
{ Journal(kr), hasFunding(bob, 𝑔) } for fresh 𝑔. But to explain why Alice got invited and Bob
did not, a more on point explanation would minimize the differences: we may want to focus on
the fact that Alice receives funding while Bob does not, rather than that she also leads a group,
which Bob cannot. Specifically, we integrate both explanations into one contrastive explanation.
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Lipton (1990) introduced the notion of contrastive explanations with the goal to express an
inquirer’s preference, or reflect their demand regarding the context in which an explanation
is requested (e.g., explain why bob was not interviewed, in the context of alice, who was).
Contrastive explanations have also been considered for answer set programming [17] as well
as in explaining classification of machine learning models [18, 19, 20, 21, 22]. Another related
term is counter-factual explanations in sub-symbolic machine learning [23, 24]. What these
approaches have in common is that they look at similarities and differences at the same time,
and that they use syntactic patterns to highlight the differences. We argue that in the context of
ABox reasoning, patterns should reflect the structure of the ABox using ABox patterns (which
are essentially conjunctive queries), that are instantiated differently for the fact and the foil.

Contributions. We propose a framework for contrastive ABox explanations (CEs) in DLs.
We distinguish between a syntactic and a semantic version, consider different optimality criteria
(minimizing differences and conflicts, maximizing similarities), and analyze them for different
DLs ranging from ℰℒ to 𝒜ℒ𝒞ℐ . We develop a first prototype for computing difference-minimal
explanations and evaluate it on ORE 2015 ontologies.

Our Definition. A contrastive ABox explanation problem (CP) is a tuple 𝑃 = ⟨𝒦, 𝐶, 𝑎, 𝑏⟩
consisting of a KB 𝒦, a concept 𝐶 and two individual names 𝑎, 𝑏, s.t. 𝒦 |= 𝐶(𝑎) and 𝒦 ̸|= 𝐶(𝑏).
Intuitively, 𝑃 reads as “Why is 𝑎 an instance of 𝐶 and 𝑏 is not?”. We call 𝑎 (or 𝐶(𝑎)) the fact and
𝑏 (𝐶(𝑏)) the foil of the CP. Note that in a CP, 𝒦 is always consistent as 𝒦 ̸|= 𝐶(𝑏).

Following Lipton (1990), we contrast 𝑎 and 𝑏 by highlighting the differences between the
reasons that support 𝐶(𝑎) and the missing elements that would support 𝐶(𝑏). Since different
individuals may be related to 𝑎 than to 𝑏, we abstract away from concrete individual names
and use instead ABox patterns. Here, an ABox pattern is a set 𝑞(𝑥⃗) of ABox assertions that
uses variables from 𝑥⃗ instead of individual names. Given a vector 𝑐⃗ of individual names with
the same length as 𝑥⃗, 𝑞(𝑐⃗) denotes the ABox assertions obtained after replacing variables by
individuals according to 𝑥𝑖 ↦→ 𝑐𝑖. The goal is to characterize the difference between individuals 𝑎
and 𝑏 using an ABox pattern 𝑞diff(𝑥⃗), paired with vectors 𝑐⃗ and 𝑑⃗ such that 𝑞diff(𝑐⃗) is entailed by
the KB, 𝑞diff(𝑑⃗) is not, and adding 𝑞diff(𝑑⃗) to the KB would entail 𝐶(𝑏). In our running example,
𝑞(𝑥, 𝑦, 𝑧) = {Journal(𝑦), hasFunding(𝑥, 𝑧)} is such an ABox pattern, where for the fact alice
we have 𝑐⃗ = ⟨alice, jair, corp⟩, and for the foil bob we use ⟨bob, kr, g⟩, for a fresh individual g.

To really explain the (missing) entailment, we also have to include other assertions relevant
to achieve the missing entailment. In our example, understanding the explanation also requires
knowing the commonality 𝑞com = {publishedAt(𝑥, 𝑦)} between the fact and foil. Precisely, our
contrastive explanations use ABox patterns 𝑞(𝑥⃗) = 𝑞com(𝑥⃗) ∪ 𝑞diff(𝑥⃗), with 𝑞com(𝑥⃗) referring to
what holds for both instantiations, and 𝑞diff(𝑥⃗) what only holds for the fact. Finally, in certain
cases it might not be possible to obtain an explanation without triggering an inconsistency. Thus,
we also permit difference-parts to be conflicting with the KB. To see this, let us replace the axiom
“∃leads.Group ⊔ ∃hasFunding.⊤ ⊑ Qualified” in our example by “∃leads.Group ⊑ Qualified”.
We might still want to provide an explanation, for instance: “If KR was a journal and Bob lead
the CS group, he would have been interviewed, but being a postdoc, he cannot lead a group.” To
consider such explanations, we add a final component called the conflict set in our definition.



Removing such conflicts from KB results in an alternative (counterfactual) scenario consistent
with the proposed explanation. These observations result in the following definition:

Definition 1. Let 𝑃 = ⟨𝒦, 𝐶, 𝑎, 𝑏⟩ be a CP where 𝒦 = ⟨𝒯 ,𝒜⟩. A solution to 𝑃 (the contrastive
ABox explanation / CE) is a tuple ⟨𝑞com(𝑥⃗), 𝑞diff(𝑥⃗), 𝑐⃗, 𝑑⃗, 𝒞⟩ of ABox patterns 𝑞com(𝑥⃗), 𝑞diff(𝑥⃗),
vectors 𝑐⃗ and 𝑑⃗ of individual names, and a set 𝒞 of ABox assertions, which for 𝑞(𝑥⃗) = 𝑞com(𝑥⃗) ∪
𝑞diff(𝑥⃗) satisfies the following conditions:

1. 𝒯 , 𝑞(𝑐⃗) |= 𝐶(𝑎) and 𝒯 , 𝑞(𝑑⃗) |= 𝐶(𝑏),
2. 𝒦 |= 𝑞(𝑐⃗),
3. 𝒦 |= 𝑞com(𝑑⃗),
4. 𝑞(𝑐⃗) is a ⊆-minimal set satisfying the conditions 1 and 2,
5. 𝒞 ⊆ 𝒜 is ⊆-minimal such that 𝒯 , (𝒜 ∖ 𝒞) ∪ 𝑞(𝑑⃗) ̸|= ⊥.

We call 𝑐⃗ and 𝑑⃗ the fact evidence and the foil evidence. The patterns 𝑞com(𝑥⃗) and 𝑞diff(𝑥⃗) will be
called the commonality and the difference between 𝑎 and 𝑏. Intuitively, 𝑞(𝑥⃗) = 𝑞com(𝑥⃗)∪ 𝑞diff(𝑥⃗)
describes a pattern that is responsible for 𝑎 being an instance of 𝐶 , with 𝑞com(𝑥⃗) describing
what 𝑎 and 𝑏 have in common, and 𝑞diff(𝑥⃗) what 𝑏 is lacking. By instantiating 𝑥⃗ with 𝑐⃗ we obtain
a set of ABox axioms that entails 𝐶(𝑎), and by instantiating it with 𝑑⃗, we obtain a set of axioms
that would entail 𝐶(𝑏), where 𝑞com(𝑑⃗) is already provided by the present ABox, and 𝑞diff(𝑑⃗) is
missing. Since, 𝑞diff(𝑑⃗) can be inconsistent with the KB, the set 𝒞 presents the conflicts and
(𝒜 ∖ 𝒞) ∪ 𝑞(𝑑⃗) depicts an alternative (consistent) scenario in which 𝐶(𝑏) is true.

Example 1. For the example in the introduction, the CP is: ⟨𝒦, Interviewed, alice, bob⟩. A CE for
this CP is ⟨𝑞com(𝑥, 𝑦, 𝑧), 𝑞diff(𝑥, 𝑦, 𝑧), 𝑐⃗, 𝑑⃗, 𝒞⟩, where

𝑞com(𝑥, 𝑦, 𝑧) = {publishedAt(𝑥, 𝑦)}, 𝑞diff(𝑥, 𝑦, 𝑧) = {hasFunding(𝑥, 𝑧), Journal(𝑦)}

𝑐⃗ = ⟨alice, jair, corp⟩, 𝑑⃗ = ⟨bob, kr, g⟩, 𝒞 = ∅

Variants of CEs. A natural restriction to Definition 1 is to limit it to syntactic CEs. For a
CP 𝑃 = ⟨𝒦, 𝐶, 𝑎, 𝑏⟩ with KB 𝒦 = ⟨𝒯 ,𝒜⟩, the CE 𝐸 = ⟨𝑞com(𝑥⃗), 𝑞diff(𝑥⃗), 𝑐⃗, 𝑑⃗, 𝒞⟩ is syntactic if
𝑞com(𝑐⃗), 𝑞diff(𝑐⃗), 𝑞com(𝑑⃗) ⊆ 𝒜. Syntactic explanations can only refer to what is explicit in the
ABox while semantic explanations can also refer to implicitly entailed information. Semantic
explanations can be useful to highlight the commonalities and differences more specifically.

Optimality Criteria. Condition 4 in Definition 1 requires the pattern 𝑞(𝑐⃗) to be subset-
minimal and helps to avoid redundant elements in the explanation. In addition, it seems natural
to require both the difference and the conflict to be as small as possible, while wanting to
maximize the commonality-part. Finally, optimality may be defined locally (e.g. subset-minimal)
or globally (cardinality-maximal). This leads to the following optimality criteria.

Given a CP 𝑃 and a contrastive explanation 𝐸 = ⟨𝑞com(𝑥⃗), 𝑞diff(𝑥⃗), 𝑐⃗, 𝑑⃗, 𝒞⟩ for 𝑃 . Then,

• 𝐸 is conflict-minimal if no explanation 𝐸′ has a conflict set 𝒞′ ⊂ 𝒞.
• 𝐸 is commonality-maximal if no explanation 𝐸′ has commonality 𝑞′com(𝑥⃗

′) and foil evi-
dence 𝑑⃗

′
, such that 𝑞com(𝑑⃗) ⊂ 𝑞′com(𝑑⃗

′
).



fresh individuals ℰℒ⊥ 𝒜ℒ𝒞/𝒜ℒ𝒞ℐ
⊆ ≤ ⊆ ≤

difference-minimal – P coNP ExpTime ExpTime

conflict-minimal
yes ExpTime ExpTime coNExpTime coNExpTime

no coNP coNP ExpTime ExpTime

commonality-maximal – – coNP ExpTime ExpTime

Table 1
Complexity of verification for syntactic CEs.

Corpus #CPs Commonality Difference Conflict Fresh Individuals Duration (sec.)

average range average range average range average range average range average range

ℰℒ⊥ 35.1 4 – 50 0.45 0 – 4 1.42 1 – 6 0.0 0 – 0 0.34 0 – 3 2.84 0.08 – 386.9

𝒜ℒ𝒞ℐ 34.7 1 – 50 0.34 0 – 7 1.29 1 – 5 0.36 0 – 9 0.25 0 – 5 8.81 0.06 – 493.6

Table 2
Experimental results for ℰℒ⊥ and 𝒜ℒ𝒞ℐ corpus. “#CP” states the number of CPs answered (out of 50)

within the timeout of 10 minutes. The other columns give statistics about the individual CEs computed.

• 𝐸 is difference-minimal if no explanation 𝐸′ has difference 𝑞′diff(𝑥⃗
′) and foil evidence 𝑑⃗

′
,

such that 𝑞′diff(𝑑⃗
′
) ⊂ 𝑞diff(𝑑⃗).

We further define each of the aforementioned optimality w.r.t. the cardinality of given sets.

Complexity Results. We note that the existence problem is often uninteresting: syntactic CE
candidates can be easily constructed from a justification for the fact, and thus always exist. Fur-
thermore, the existence of a solution also implies the existence of a subset- or cardinality-minimal
one for each component one prefers. Therefore, from the complexity theoretic perspective, a
more interesting problem is the verification of a CE when given as input. Given a CP 𝑃 formu-
lated in DL ℒ and an explanation 𝐸 for 𝑃 , determine whether 𝐸 is a valid 𝐷-CE for 𝑃 with op-
timal 𝐶 . We considered DLs ℒ ∈ {ℰℒ⊥,𝒜ℒ𝒞,𝒜ℒ𝒞ℐ}, definitions 𝐷 ∈ {syntactic, semantic}
and optimal criteria 𝐶 ∈ {conflict, commonality, difference}. An interesting observation is that
conflict-minimality may require exponentially many fresh individuals in the foil vector, thus
leading to a high complexity. We thus also consider the case without fresh individuals here.

Prototypical Implementation. We show that difference-minimal CEs can be computed in
polynomial time with an oracle deciding logical entailment, while all the other criteria are
intractable. Based on this observation, we developed a first prototype to compute difference-
minimal syntactic CEs. We evaluated it on ontologies from the OWL Reasoner Competition ORE
2015 [25, 26], restricted to the fragments we support, and using randomly generated explanation
problems with concepts of size 5. Results are shown in Table 2—though not optimized much, we
could often compute CEs in practice, and all the elements allowed by our definition occurred
in computed CEs. Our results indicate that the CEs computed tended to be simple, despite the
concept to be explained of size five.
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