
Towards Conceptual Clustering in EL with
Simulation Graphs
Ruud van Bakel, Michael Cochez and Patrick Koopmann

Vrije Universiteit Amsterdam, De Boelelaan 1105, 1081 HV Amsterdam, The Netherlands

Abstract
We introduce ℰℒ clustering, a type of conceptual clustering in which each cluster is described by an
ℰℒ concept. The cluster then contains all instances of that concept. This contribution can be seen as
a form of unsupervised learning of ℰℒ concepts from data, useful for analyzing graph-based data as
well as for ontology engineering. Towards a practical method for ℰℒ clustering, we introduce complete
simulation graphs, a structure from which all possible ℰℒ clusterings of the given data can be extracted.
From this structure, a good ℰℒ clustering is then selected based on a utility function. We evaluate a first
prototypical implementation of this idea on ABoxes of ontologies from a known benchmark, and show
that bounded simulation graphs and ℰℒ clusterings can often be computed in practice.

Keywords
unsupervised learning, conceptual clustering, summarization

1. Introduction

One of the central functions of an ontology is to specify the meaning of concepts from some
domain of interest. In the case of ontologies formalized in description logics (DLs), these
concepts are specified through axioms, usually producing a subsumption hierarchy of concepts
from more general to more specific ones. Such an ontology can then be used in combination
with a dataset (an ABox), and a reasoner can infer which objects in the data belong to which
concepts defined in the ontology, thus organizing these objects into different categories of
differing specificity. This makes ontologies useful for organizing and accessing data for many
use cases. For example, consider a digital health record containing information about patients
and what they are treated for in a hospital. Using a medical ontology, we can group patients into
more high-level categories and e.g. find out how many patients are treated for heart diseases.

A major downside of ontologies is that they need to be formalized first, which requires the
right expertise and can be a laborous process. As a solution, we propose to use conceptual
clustering as an approach to mine DL concepts directly from data. This may be useful for
different reasons: 1) the obtained concepts could be relevant concepts that should be added to an
ontology, and thus support ontology engineering, and 2) they can help analyzing and exploring

DL 2025: 38th International Workshop on Description Logics, September 3–6, 2025, Opole, Poland
$ r.van.bakel@vu.nl (R. v. Bakel); m.cochez@vu.nl (M. Cochez); p.k.koopmann@vu.nl (P. Koopmann)
� https://r-van-bakel.github.io/ (R. v. Bakel); https://www.cochez.nl (M. Cochez); pkoopmann.github.io
(P. Koopmann)
� 0000-0002-6891-5237 (R. v. Bakel); 0000-0001-5726-4638 (M. Cochez); 0000-0001-5999-2583 (P. Koopmann)

© 2025 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

mailto:r.van.bakel@vu.nl
mailto:m.cochez@vu.nl
mailto:p.k.koopmann@vu.nl
https://r-van-bakel.github.io/
https://www.cochez.nl
pkoopmann.github.io
https://orcid.org/0000-0002-6891-5237
https://orcid.org/0000-0001-5726-4638
https://orcid.org/0000-0001-5999-2583
https://creativecommons.org/licenses/by/4.0
https://ceur-ws.org
https://ceur-ws.org

data that are organized in graphs (e.g. knowledge graphs), by organizing the objects in the data
into categories that can also be described in an intuitive way.

A pletora of research considers learning of DL descriptions, though not much considers the
precise setting we have in mind. Approaches for active learning, e.g. following Angluin’s exact
learning approach, assume that the learning system is interacting with a teacher (e.g. a domain
expert) to whom it can send queries and current formalizations [1, 2]. Another line of research
considers concept learning: here, we start with a set of individuals from the data grouped into
positive and negative examples, and try to learn a DL concept that describes all of the positive
and none of the negative examples [3, 4, 5, 6, 7]. Both types of learning are supervised in the
sense that additional information from a domain expert is required.

In unsupervised learning, the goal is to learn axioms or concepts with less user input from the
data. Unsupervised learning of GCIs is investigated in [8] using an induction-based approach.
A limitation of this approach is that a set of interesting concepts has to be known beforehand,
which arguably makes this approach less unsupervised. D’Amato et al. [9] developed a method
for conceptual clustering to automatically generate hierarchies of 𝒜ℒ𝒞 concepts from data. The
idea of conceptual clustering goes back to [10, 11]. Early systems such as COBWEB [12] cluster
data represented as vectors with values for different features into a hierarchy of clusters that
can be described based on their features. Clusters can then be described by “concepts” that
associate to the different features a probability distribution of the weights. This is similar to
classical clustering, where objects are typically clustered based on distance measures. However,
instead of distance measures, usually a utility criterion is used that takes the quality of the
cluster description and its predictive power into account. Moreover, the expressivity of the
description language determines which clusters are possible, since every entity in the cluster
must be described by the concept. D’Amato et al. follow this idea using the more expressive
𝒜ℒ𝒞 to describe the clusters. Unfortunately, the method does not scale well on larger data sets.

Moving to the more scalable DL ℰℒ, a line of research considers unsupervised learning
following the idea of formal concept analysis (FCA)[13, 14, 15, 16]. Those works focus on finding
a finite base of axioms that fully characterize a given interpretation, i.e. cover all ℰℒ axioms
that hold in this interpretation. ℰℒ provides nice model-theoretical properties that allow to
use techniquess such as products and simulations to more efficiently determine concepts that
are relevant in a given interpretation. [17] uses the ideas from these FCA methods to apply a
form of conceptual clustering for ℰℒ with bounded role depth. The method was able to cluster
15 objects on a knowledge graph with 1,216 triples into ℰℒ concepts with role depth two, but
could not scale beyond. In this paper, we want to better understand the general feasibility of
such a approach, using more closely the original idea of conceptual clustering used in [9], using
an ad-hoc, but well-motivated, first utility measure.

Different from classical clustering approaches on graphs that first translate nodes into feature
vectors, e.g. through embeddings [18, 19, 20], our conceptual clustering approach directly works
on the graph structure, which adds to the transparency of the clustering result. The central
idea is to use simulation graphs, a compressed representation of all possible clusterings of a
given ABox. Similar structures were also used in works on FCA with ℰℒ. To obtain scalability,
we used an optimized algorithm to summarize ABox based on simulation—identifying objects
that cannot be distinguished by ℰℒ concepts. An extended version of the paper with additional
details is provided together with the experimental data on Zenodo [21].

2. Preliminaries

2.1. The Description Logic ℰℒ

Fix three countably infinite, pair-wise disjoint sets NC, NR and NI of respectively concept names,
roles and individuals. Concept names and roles correspond to unary and binary predicates
in first-order logic, and individuals to constants. An ABox 𝒜 is a set of ground atoms called
assertions, which are of the forms 𝐴(𝑎) and 𝑟(𝑎, 𝑏), where 𝐴 ∈ NC, 𝑟 ∈ NR and 𝑎, 𝑏 ∈ NI. We
use NI(𝒜)/NC(𝒜)/NR(𝒜) to refer to the individuals/concept names/roles in 𝒜. ℰℒ concepts
𝐶 are built based on the syntax rule 𝐶 ::= ⊤ | 𝐴 | 𝐶 ⊓ 𝐶 | ∃𝑟.𝐶 , where 𝐴 ∈ NC and 𝑟 ∈ NR.
The depth of an ℰℒ concept is the maximal nesting depth of role restrictions ∃𝑟.𝐶 occurring in
it. The semantics of DLs is defined using first-order interpretations, e.g. tuples ℐ = ⟨Δℐ , ·ℐ⟩
with a non-empty domain Δℐ and an interpretation function ·ℐ assigning to every individual
𝑎 ∈ NI an element 𝑎ℐ ∈ NI, every concept name 𝐴 ∈ NC a set 𝐴ℐ ⊆ Δℐ , and to every role
𝑟 ∈ NR a relation 𝑟ℐ ⊆ Δℐ × Δℐ . The interpretation function is lifted to ℰℒ concepts as
follows: ⊤ℐ = Δℐ , (𝐶 ⊓𝐷)ℐ = 𝐶ℐ ∩𝐷ℐ , and (∃𝑟.𝐶)ℐ = {𝑑 ∈ Δℐ | ∃⟨𝑑, 𝑒⟩ ∈ 𝑟ℐ s.t. 𝑒 ∈ 𝐶ℐ}.
An individual 𝑎 ∈ NI satisfies a concept 𝐶 in ℐ , in symbols ℐ |= 𝐶(𝑎), if 𝑎ℐ ∈ 𝐶ℐ . ℐ is a
model of an ABox 𝒜, in symbols ℐ |= 𝒜, if 𝑎ℐ ∈ 𝐴ℐ for every 𝐴(𝑎) ∈ 𝒜, and ⟨𝑎ℐ , 𝑏ℐ⟩ ∈ 𝑟ℐ

for every 𝑟(𝑎, 𝑏) ∈ 𝒜. TBoxes or ontologies put additional constraints on an interpretation—an
interpretation that satisfies these constraints is then a model of this TBox. The syntax is not
relevant in this paper. A knowledge base (KB) is the union 𝒯 ∪ 𝒜 of a TBox and an ABox. A
model of such a KB is an interpretation that is a model for both 𝒯 and 𝒜. Note that a TBox and
an ABox on their own is already a KB. If an assertion 𝛼 is satisfied in every model of a KB 𝒦,
we write 𝒦 |= 𝛼 and say 𝛼 is entailed by 𝒦. In the special case where 𝛼 = 𝐶(𝑎), we say that 𝑎
is an instance of 𝐶 in 𝒦.

Every ABox has a unique minimal model that has one domain element per individual in the
ABox which can be embedded into every other model of the ABox. For convenience, we may
sometimes identify ABoxes with their minimal models.

2.2. Model Theory

Relevant to this work are also the notions of simulations , bisimulations and products of interpre-
tations, which characterize the expressivity of DLs.

A pointed interpretation is a tuple ⟨ℐ, 𝑑⟩ of an interpretation ℐ and a domain element 𝑑 ∈ Δℐ .
Given two pointed interpretations ⟨ℐ, 𝑑⟩ and ⟨𝒥 , 𝑒⟩, a simulation from ⟨ℐ, 𝑑⟩ into ⟨𝒥 , 𝑒⟩ is a
relation ⪯ ⊆ Δℐ ×Δ𝒥 that satisfies:

1. 𝑑 ⪯ 𝑒,
2. if 𝑑′ ∈ 𝐴ℐ and 𝑑′ ⪯ 𝑒′, then 𝑒′ ∈ 𝐴𝒥 ,
3. if ⟨𝑑1, 𝑑2⟩ ∈ 𝑟ℐ and 𝑑1 ⪯ 𝑒1, then there must be 𝑒2 ∈ Δ𝒥 s.t. 𝑑2 ⪯ 𝑒2 and ⟨𝑒1, 𝑒2⟩ ∈ 𝑟𝒥 .

We sometimes just write ⟨ℐ, 𝑑⟩ ⪯ ⟨𝒥 , 𝑒⟩ to indicate that there exists such a simulation, without
indicating the precise ⪯. If Conditions 2 and 3 also hold for the inverse relation, then ⪯ is called a
bisimulation. Simulations characterize the expressivity of ℰℒ model-theoretically: for countable
interpretations, if there is a simulation from ⟨ℐ, 𝑑⟩ into ⟨𝒥 , 𝑒⟩, then for every ℰℒ concept 𝐶 ,
𝑑 ∈ 𝐶ℐ implies 𝑒 ∈ 𝐶𝒥 . In the same way, bisimulations characterize the expressivity of the

classical DL 𝒜ℒ𝒞, which plays only a minor role in this paper and is therefore not introduced
beyond this fact. For elements 𝑑, 𝑒 in an interpretation ℐ , we say that 𝑑 is (bi-)similar to 𝑒 if there
exists a (bi-)simulation ⪯ s.t. ⟨ℐ, 𝑑⟩ ⪯ ⟨ℐ, 𝑒⟩. (Note that similarity is in general not symmetric,
contrary to what the name suggests. Bisimilarity on the other hand forms an equivalence
relation.)

The product of two pointed interpretations ⟨ℐ1, 𝑑⟩ and ⟨ℐ2, 𝑒⟩ is a pointed interpretation
⟨𝒥 , ⟨𝑑, 𝑒⟩⟩ defined inductively as the smallest interpretation that satisfies the following:

1. ⟨𝑑, 𝑒⟩ ∈ Δ𝒥 ,
2. for every ⟨𝑑′, 𝑒′⟩ ∈ Δ𝒥 s.t. 𝑑′ ∈ 𝐴ℐ1 and 𝑒′ ∈ 𝐴ℐ2 , we have ⟨𝑑′, 𝑒′⟩ ∈ 𝐴𝒥 ,
3. for every ⟨𝑑1, 𝑒1⟩ ∈ Δ𝒥 s.t. ⟨𝑑1, 𝑑2⟩ ∈ 𝑟ℐ1 and ⟨𝑒1, 𝑒2⟩ ∈ 𝑟ℐ2 , there is ⟨𝑑2, 𝑒2⟩ ∈ Δ𝒥 and

⟨⟨𝑑1, 𝑒1⟩, ⟨𝑑2, 𝑒2⟩⟩ ∈ 𝑟𝒥 .

The construction of ⟨𝒥 , ⟨𝑑, 𝑒⟩⟩ ensures that ⟨𝒥 , ⟨𝑑, 𝑒⟩⟩ is a maximal interpretation such that
⟨𝒥 , ⟨𝑑, 𝑒⟩⟩ ⪯ ⟨ℐ1, 𝑑⟩ and ⟨𝒥 , ⟨𝑑, 𝑒⟩⟩ ⪯ ⟨ℐ2, 𝑑⟩. As a consequence, ⟨𝑑, 𝑒⟩ satisfies exactly those
ℰℒ concepts that both 𝑑 and 𝑒 satisfy in their respective interpretations. If Δℐ1 and Δℐ2 are
both finite, then |Δ𝒥 | ≤ |Δℐ1 | · |Δℐ2 |.

Lemma 1. Let ⟨𝒥 , ⟨𝑑, 𝑒⟩⟩ be the product of two pointed interpretations ⟨ℐ1, 𝑑⟩ and ⟨ℐ2, 𝑒⟩. Then,
for every ℰℒ-concept 𝐶 such that 𝑑 ∈ 𝐶ℐ1 and 𝑒 ∈ 𝐶ℐ2 , ⟨𝑑, 𝑒⟩ ∈ 𝐶𝒥 . Moreover, ⟨𝑑, 𝑒⟩ satisfies
no other concepts in 𝒥 .

3. ℰℒ Clusterings and Simulation Graphs

This paper is about computing ℰℒ clusterings:

Definition 1. Let 𝒦 be a KB. An ℰℒ clustering for 𝒦 is a finite set of pairs ⟨𝐶,A⟩ where 𝐶 is an
ℰℒ concept and A is the set of instances of 𝐶 in 𝒦. We call the pairs ⟨𝐶,A⟩ ℰℒ clusters.

Note that this definition is highly unspecific, and even allows empty clusters or clusters that
only differ in the concept but not in the set of individuals. For example, ℰℒ clusters may be
pair-wise disjoint, or they may form a (subsumption-)hierarchy. We also do not require the
clustering to cover all individuals in the ABox, to allow for robustness against outliers. We will
come to the question of what constitutes a good ℰℒ clustering later.

At the center of our approach is the simulation graph, which is a structure that abstracts
ABoxes into different sets of individuals in a way that preserves simulations. Fix an ABox 𝒜.
Given sets A, B ⊆ 𝒜, we write A

𝑟−→ B if for every 𝑎 ∈ A, there exists 𝑏 ∈ B s.t. 𝑟(𝑎, 𝑏) ∈ 𝒜.

Definition 2 (Simulation graphs). Let 𝒜 be an ABox. A simulation graph for 𝒜 is a directed
labeled graph 𝒮 = ⟨𝑉,𝐸, 𝜆𝑣, 𝜆𝑒⟩ with vertex-labeling 𝜆𝑣 and edge labeling 𝜆𝑒 s.t. 𝑉 ⊆ 2NI(𝒜),
𝜆𝑣 : 𝑉 → 2NC and 𝜆𝑒 : 𝑉 → 2NR , and which satisfies the following conditions:

1. 𝜆𝑣(A) = {𝐴 ∈ NC | 𝐴(𝑎) ∈ 𝒜 for all 𝑎 ∈ A},
2. if A 𝑟−→ B, then ⟨A,B⟩ ∈ 𝐸 with 𝜆𝑒(⟨A,B⟩) = {𝑠 ∈ NR | A 𝑠−→ B},
3. for every 𝑎 ∈ NI(𝒜) and A ∈ 𝑉 , if 𝐴(𝑎) ∈ 𝒜 for every 𝐴 ∈ 𝜆𝑣(A) and {𝑎} 𝑟−→ B for

every ⟨A,B⟩ ∈ 𝐸 s.t. 𝑟 ∈ 𝜆𝑒(⟨A,B⟩), then 𝑎 ∈ A.

The vertices in the simulation graphs correspond to sets of individuals from the ABoxes, with
edges between vertices if there is a role connection between the corresponding individuals.
The last condition ensures that the graph, intuitively, groups individuals based on simulations.
Since simulation graphs label vertices with concept names and edges with roles, we can identify
them with corresponding interpretations, and lift the definition of products and simulations
to also include simulation graphs. Our definition then ensures that for all A ∈ 𝑉 , A contains
exactly those individuals 𝑎 ∈ NI(𝒜) for which ⟨𝒮,A⟩ ⪯ ⟨𝒜, 𝑎⟩. This allows us to establish a
connection between simulation graphs and ℰℒ clusterings:

Lemma 2. One can extract from every simulation graph 𝒮 for 𝒜 an ℰℒ clustering 𝒞 for 𝒜 that
has an ℰℒ cluster ⟨𝐶,A⟩ for every node A in 𝒮 and no other clusters. Moreover, for every ℰℒ
clustering 𝒞 for 𝒜, there exists a simulation graph 𝒮 for 𝒜 that has a node A for every cluster
⟨𝐶,A⟩ ∈ 𝒞.

Note that the simulation graph corresponding to an ℰℒ clustering may have more vertices
than the clustering has clusters, in order to deal with role-successors.

We define some desirable properties of simulation graphs if we want to use them for computing
ℰℒ clusterings.

Definition 3 (Properties). A simulation graph 𝒮 = ⟨𝑉,𝐸, 𝜆𝑣, 𝜆𝑒⟩ for 𝒜 is

• complete if for every ℰℒ concept 𝐶 , there exists some A ∈ 𝑉 that contains exactly the
instances of 𝐶 in 𝒜,

• 𝑛-complete, where 𝑛 ≥ 0, if for every ℰℒ concept 𝐶 of depth at most 𝑛, there exists some
A ∈ 𝑉 that contains exactly the instances of 𝐶 in 𝒜,

• summarizing if for every 𝑎 ∈ NI(𝒜) there is some vertex A ∈ 𝑉 that contains exactly the
individuals in NI(𝒜) that are similar to 𝑎.

• 𝑛-summarizing, where 𝑛 ≥ 0, if for every 𝑎 ∈ NI(𝒜), there is some vertex A ∈ 𝑉 s.t.
A = {𝑏 ∈ NI(𝒜) | 𝒜 |= 𝐶(𝑏) for every ℰℒ-concept 𝐶 of depth at most 𝑛 s.t. 𝒜 |= 𝐶(𝑏)}.

Completeness implies all the other properties in this definition. Being 𝑛-summarizing is
an approximation to being summarizing in the same way as 𝑛-completeness approximates
completeness: for this, it is sufficient to recall that, if 𝑎 is similar to 𝑏, then 𝑏 is an instance
of every ℰℒ concept that 𝑎 is an instance of. For 𝑛 ≥ |NI(𝒜)|, the notions 𝑛-complete and
𝑛-summarizing are equivalent to the non-approximative versions complete and summarizing.

3.1. Summarizing Simulation Graphs

As we will see later, summarizing simulation graphs can be computed efficiently. They have the
potential to be useful not only for conceptual clustering in ℰℒ, but also to improve reasoning
times in general and to be used for other learning problems in DLs up to the expressivity
of 𝒜ℒ𝒞. The key property is that summarizing simulation graphs preserve all the relevant
information about the individuals in an ABox, even if a TBox is added that is expressed in the
more expressive DL 𝒜ℒ𝒞. For a given simulation graph 𝒮 = ⟨𝑉,𝐸, 𝜆𝑣, 𝜆𝑒⟩, introduce a distinct
individual 𝑎A for every A ∈ 𝑉 and define the induced ABox 𝒜𝒮 as

𝒜𝒮 = {𝐴(𝑎A) | 𝐴 ∈ 𝜆𝑣(A)} ∪ {𝑟(𝑎A, 𝑎B) | ⟨A,B⟩ ∈ 𝐸 and 𝑟 ∈ 𝜆𝑒(⟨A,B⟩)}.

Theorem 1. Let 𝒮 = ⟨𝑉,𝐸, 𝜆𝑣, 𝜆𝑒⟩ be a summarizing simulation graph for an ABox 𝒜 and 𝒯
an 𝒜ℒ𝒞 TBox. Let 𝑎 ∈ NI(𝒜) and let A ∈ 𝑉 be the smallest node in 𝑉 (wrt. ⊆) s.t. 𝑎 ∈ A. Then,
for every 𝒜ℒ𝒞 concept 𝐶 , 𝒯 ∪ 𝒜 |= 𝐶(𝑎) iff 𝒯 ∪ 𝒜𝒮 |= 𝐶(𝑎A).

Proof. The definition of summarizing simulation graphs makes sure that 𝑎A is not only similar
to 𝑎, but indeed bisimilar. Consequently, given a model ℐ of 𝒯 ∪ 𝒜, we can find a model 𝒥 of
𝒯 ∪ 𝒜𝒮 s.t. ⟨ℐ, 𝑎ℐ⟩ and ⟨𝒥 , 𝑎𝒥A⟩ are bisimilar, which implies that they satisfy the same 𝒜ℒ𝒞
concepts, and the same holds for the other direction.

Theorem 1 justifies why we define and compute simulation graphs only for ABoxes: adding
a TBox, even if it is more expressive than ℰℒ, cannot lead to new clusters being introduced.
At the same time, reasoning is usually less computationally expensive without TBox. As we
will see later, we are able to compute summarizing simulation graphs even for large ABoxes in
very short time, and the number of nodes in such a graph is often significantly smaller than
the size of the ABox. This indicates that simulation graphs also have the potential to speed up
reasoning for KBs with large ABoxes. Theorem 1 also indicates potential for using simulation
graphs for learning in more expressive logics:

Corollary 1. Let 𝒦 = 𝒯 ∪ 𝒜 be an 𝒜ℒ𝒞 KB and 𝒮 = ⟨𝑉,𝐸, 𝜆𝑣, 𝜆𝑒⟩ a summarizing simulation
graph for 𝒜. Then, for every 𝒜ℒ𝒞 concept 𝐶 , the set of instances of 𝐶 in 𝒦 is the union over some
subset 𝑉 ′ ⊆ 𝑉 .

This means that even for supervised learning problems, that try to find a concept based on
a given set of positive and negative examples, solutions can be obtained from summarizing
simulation graphs. In fact, together with Lemma 2, we obtain that all solutions to concept
learning problems in 𝒜ℒ𝒞 can be expressed as disjunction over ℰℒ concepts. (Complement
and value restrictions may however lead to more concise concepts.)

3.2. Complete Simulation Graphs

It is an easy consequence of our definitions that complete simulation graphs are unique.

Corollary 2. For any ABox 𝒜, there is exactly one complete simulation graph.

We can get to this conclusion also by observing that complete simulation graphs are simply
summarizing simulation graphs that are closed under products. For this, we first need to adapt
the definition of products to simulation graphs. Given a simulation graph 𝒮 = ⟨𝑉,𝐸, 𝜆𝑣, 𝜆𝑒⟩
and two elements A,B ∈ 𝑉 , we can define the product of A and B as a node A×B in a new
simulation graph 𝒮A×B = ⟨𝑉 ′, 𝐸′, 𝜆′

𝑣, 𝜆
′
𝑒⟩ defined inductively as the smallest extension of 𝒮

with new vertices A′ ×B′ that satisfies the following conditions:

1. A×B ∈ 𝑉 ′,
2. for any A′ ×B′ ∈ 𝑉 ′, A′ ∪B′ ⊆ A′ ×B′,
3. for any A′ ×B′ ∈ 𝑉 ′, 𝜆′

𝑣(A
′ ×B′) = 𝜆(A′) ∩ 𝜆𝑣(B

′),
4. for any A1 × B1 ∈ 𝑉 ′, ⟨A1,A2⟩, ⟨B1,B2⟩ ∈ 𝐸, there is A2 × B2 ∈ 𝑉 ′ and ⟨A1 ×

B1,A2 ×B2⟩ ∈ 𝐸′ with 𝜆′
𝑒(⟨A1 ×B1,A2 ×B2⟩) = 𝜆𝑒(⟨A1,A2⟩) ∩ 𝜆2(⟨B1,B2⟩).

Note that as a consequence of Item 3 in Definition 2, A′ ×B′ may contain more elements than
A∪B—we require it to be the smallest extension that satisfies these criteria. The product is well-
defined, since we can compute it using a fixpoint construction. We now say that a simulation
graph is closed under products if applying the product on any pair of vertices produces again
the same simulation graph. By using Lemma 1 and relating products in simulation graphs to
products in pointed interpretations, we obtain the following theorem:

Theorem 2. For all 𝑛 ≥ 0, any simulation graph that is (𝑛-)summarizing and closed under
products is (𝑛-)complete.

3.3. Extracting ℰℒ-Clusterings

Because every ℰℒ concept is represented with its set of instances, complete simulation graphs
give an upper bound on what can be included in an ℰℒ-clustering. If we are only interested
in ℰℒ concepts of bounded depth, 𝑛-complete simulation graphs are sufficient. Indeed, we
can extract for each node in an 𝑛-complete simulation graph the corresponding ℰℒ-concept of
depth at most 𝑛 using an inductive procedure. Fix a simulation graph 𝒮 = ⟨𝑉,𝐸, 𝜆𝑣, 𝜆𝑒⟩. We
associate to every A ∈ 𝑉 and 𝑛 ≥ 0 the ℰℒ concept 𝐶(𝑛)

A defined inductively as follows:

1. 𝐶
(0)
A =

d
𝜆𝑣(A)

2. For 𝑛 > 0, 𝐶(𝑛)
A =

d
𝜆𝑣(A) ⊓

d
⟨A,B⟩∈𝐸

d
𝑟∈𝜆𝑒(⟨A,B⟩) ∃𝑟.𝐶

(𝑛−1)
B

It follows directly from our definitions that 𝒜 |= 𝐶𝑛
A(𝑎) for every 𝑎 ∈ A, and that for an

𝑛-complete simulation graph, we can obtain all possible ℰℒ clusters with concepts of depth
at most 𝑛. We can use those clusters also together with an ℰℒ- or 𝒜ℒ𝒞 TBox. It can then be
that we need less clusters: concepts for different vertices may become equivalent because of the
TBox, and even capture the same set of individuals if they are not equivalent. The TBox can also
be used to obtain more concise descriptions of the clusters: the method in [22] can compute for
a given ℰℒ concept a concept of minimal length that is equivalent wrt. the TBox. We may use
this in future work to obtain more user-friendly representations of conceptual clusterings.

To determine which subset 𝑉 ′ ⊆ 𝑉 constitutes a good ℰℒ-clustering, we introduce quality
measures for ℰℒ-clusterings, which we here define in the most general way.

Definition 4. An ℰℒ-cluster quality measure is a function 𝑞 mapping pairs of KBs and ℰℒ
clusters to real numbers. An ℰℒ-clustering quality measure is a function 𝑞 that assigns to every
KB and set of ℰℒ-clusters a real number.

Quality measures may take into account different aspects such as the number of individuals
in the cluster, the length of the concept, or try to minimize the overlap between different
clusters. What constitutes a good quality measure will ultimately depend on the use case: for
instance, if we want to use clusterings to support ontology engineering, we may also want to
take into account whether introducing a concept name for a cluster will allow us to describe
individuals more concisely. We keep a deeper investigation of quality measures as future work,
and use for now a quality measure based on the idea of category utility already used in the
conceptual clustering algorithm COBWEB [12]. Intuitively, the utility of a cluster captures its
predictive power : how does knowing that an individual belongs to a cluster help us in predicting

which concepts it satisfies? This is in in particular helpful if we want to use ℰℒ clusterings to
organize and explore the individuals in a KB: For this, we may organize the ℰℒ clustering in a
subsumption hierarchy, and navigate it starting from the most general concept. Assume we
want to explore a dataset about employees in a company and the gender of an employee has no
correlation to any of the other properties in the dataset. Then, organizing the data by gender
does not bring any advantage, since it does not have any predictive power. Rather, we would
like to organize the employees based on concepts that let us predict additional information.

Simulation graphs also help with defining this predictive power. Fix a KB 𝒦 = 𝒯 ∪𝒜. Given
two sets A,B ⊆ NI(𝒜), the conditional probability of A given B is defined as 𝑃 (A | B) =
|A∩B|
|B| , and the probability of A as 𝑃 (A) = 𝑃 (A | NI(𝒜)). Given a concept name 𝐴, we use

𝐴𝒦 to refer to the instances of 𝐴 in 𝒦. By abuse of notation, given A ⊆ 𝒜 and 𝑟 ∈ NR, we use
∃𝑟.A𝒦 to denote the individuals that have an 𝑟-successor in A:

∃𝑟.A𝒦 = {𝑎 ∈ NI(𝒜) | 𝑟(𝑎, 𝑏) ∈ 𝒜, 𝑏 ∈ A}

Definition 5. Let 𝒦 = 𝒯 ∪ 𝒜 be a KB and 𝒮 = ⟨𝑉,𝐸, 𝜆𝑣, 𝜆𝑒⟩ a simulation graph for 𝒜. The
utility of a cluster ⟨𝐶,A⟩ in context C ⊆ NI(𝒜), relative to 𝒮 , is defined as

𝑢𝑡𝒮(A | C) = 𝑃 (A | C) ·

⎛⎝ ∑︁
𝐴∈NC

(︀
𝑃 (𝐴𝒦 | A ∩C)2 − 𝑃 (𝐴𝒦 | C)2

)︀

+
∑︁
𝑟∈NR

∑︁
B∈𝑉

(︀
𝑃 (∃𝑟.B𝒦 | A ∩C)2 − 𝑃 (∃𝑟.B𝒦 | C)2

)︀⎞⎠
The utility of ⟨𝐶,A⟩ ∈ 𝑉 is defined as 𝑢𝑡𝒮(A | NI(𝒜)).

Note that the concept 𝐶 used to describe the cluster is not relevant here. 𝒮 determines which
subsets of NI(𝒜) can be distinguished by the measure. In the case where 𝒮 is complete, these
are indeed the subsets of NI(𝒜) that can be distinguished using ℰℒ concepts. Individuals can be
described based on which concept names they satisfy, and which ℰℒ concepts their 𝑟-successors
satisfy. The intuitive idea of the utility of a vertex A is that guessing whether an individual 𝑎
belongs to A gives us an advantage in guessing any of these characteristics.

Looking at the utility of vertices in isolation is not sufficient for extracting a good ℰℒ
clustering, because there may be vertices with high utility that cover almost the same set of
individuals. We therefore consider also the relative utility of one vertex to another: Assuming
we know that an individual 𝑎 belongs to A or B, does guessing which one it belongs to give
any advantage in guessing its other properties? This corresponds to 𝑢𝑡𝒮(A | A ∪ B). If A
and B help predicting the same things, then this value is going to be lower than if they predict
different things, so that minimizing this value will lead to a more useful set of ℰℒ clusters. We
can thus define the relative utility of a cluster ⟨𝐶,A⟩ in a given ℰℒ-clustering 𝒞 as

𝑢𝑡𝒮(A | 𝒞) = min{𝑢𝑡𝒮(A | A ∪B) | ⟨𝐷,B⟩ ∈ 𝒞, 𝐷 ̸= 𝐶}.

Intuitively, if the relative utility of a cluster is low, then dropping it from the clustering is not
going to affect its overall predictive power, as the predictive power of that cluster is anyway
low in presence of other clusters.

We now define the utility of an ℰℒ-clustering 𝒞 (relative to a simulation graph 𝒮) as

𝑢𝑡𝒮(𝒞) =
∑︁

⟨𝐶,A⟩∈𝒞

𝑢𝑡𝒮(A | 𝒞).

4. Computing ℰℒ-Clusterings in Practice

We first compute a summarizing simulation graph 𝒮 = ⟨𝑉,𝐸, 𝜆𝑣, 𝜆𝑒⟩ from the given Abox
𝒜. For ease of presentation, we assume in the following that every concept assertion 𝐴(𝑎) is
represented as a role assertion 𝑟(𝑎, 𝑑*) with 𝑑* some specific fresh individual. The backbone of
our algorithm is the process of partition refinement [23]. The intuition here is that we cluster
many individuals together at first, then as we consider deeper ℰℒ concepts, we further refine
the clusters in smaller ones. We use the following notation to refer to our partitions on the
individuals:

Definition 6 (Partition on the individuals). 𝑃 (𝑙) := 𝑃 (𝑙)(𝒜) is the partition on the set of
individuals NI, generated by ℰℒ concepts of depth 𝑙.

We will now explain what it means for ℰℒ concepts to generate a partition. The first partition
always clusters all individual together in one set: 𝑃 (0) = {NI}. For any subsequent partition
we have the following rule:

Definition 7 (Refinement). Any two concepts 𝑎 and 𝑏 are clustered together in 𝑃 (𝑙) (with 𝑙 ≥ 1)
if all of the following conditions hold:

• 𝑎 and 𝑏 are clustered together in 𝑃 (𝑙−1),
• for every 𝑟(𝑎, 𝑐) ∈ 𝒜 there exists an 𝑟(𝑏, 𝑑) ∈ 𝒜, such that 𝑐 and 𝑑 are clustered together in
𝑃 (𝑙−1),

• for every 𝑟(𝑏, 𝑑) ∈ 𝒜 there exists an 𝑟(𝑎, 𝑐) ∈ 𝒜, such that 𝑐 and 𝑑 are clustered together in
𝑃 (𝑙−1).

If we assume a finite ABox, then when computing the partitions at some point the algorithm
will find a fixed point 𝑡, i.e. 𝑃 (𝑡+1) = 𝑃 (𝑡). From this point onward all the partitions will stay
the same. Therefore when the fixed point is found, our algorithm stops. We can now get 𝑉 as
the union of all the partitions: 𝑉 =

⋃︀𝑡
𝑖=0 𝑃

(𝑡).
For the edges 𝐸 we have the following rule:

Definition 8 (Simulation graph edges). Any triple (S, 𝑟,O) is part of 𝐸 if and only if there exists
at least one level 𝑖 that satisfies the following:

• S ∈ 𝑃 (𝑖),
• O ∈ 𝑃 (𝑖−1),
• there exist individuals 𝑠 ∈ S and 𝑜 ∈ O, such that 𝑟(𝑠, 𝑜) ∈ 𝒜.

With the vertices and edges generated, we can now simply take the labelings as defined in
Definition 2 to create 𝒮 . It is easy to verify that this results in a summarizing simulation graph.
Moreover, if we replace 𝑉 by 𝑉𝑘 =

⋃︀𝑘
𝑖=0 𝑃

(𝑡), we obtain a 𝑘-summarizing simulation graph.

ThingManGrandson

Married Man Married Parent Married Woman

Married Father Married Mother

Married Grandfather Married Grandmother

Figure 1: Clusters found in the familiy history ontology, with labels indicating their intuitive meaning.

To extend the summarizing simulation graph to a complete one, which at the same time
serves as initial clustering, we add products of pairs of vertices in rounds until a fixpoint is
reached. To optimize the utility, we follow a greedy approach, and remove the worst cluster
according to 𝑢𝑡𝒮(A | A ∪B) until a termination criterion is met. In our experiments, we used
the desired number of clusters as criterion.

5. Evaluation

We applied the implementation on the family-history ontology that was used in [5] to evaluate
concept learning, which is an ontology with a very simple TBox (no complex concepts), and
whose ABox contains famility relations as roles and concepts for different types of family
members. The ABox contained 1780 assertions with 202 individuals, which were summarized
into 244 nodes in the summarizing simulation graph, and 30 in the 1-summarizing graph. We
computed the 1-complete graph after 4 rounds of building products of all nodes, thus obtaining
all relevant ℰℒ concepts without nested role restrictions. This graph contained 53 nodes,
from which we extracted 10 ℰℒ clusters using the greedy algorithm. When computing the
utility (here and in later experiments), we used the complete summarizing graph, and not
just the 1-summarizing one. While the corresponding concepts were relatively complex, they
mostly correspond to simple concepts in human language, e.g. “Person ⊓ Male” corresponding
to “Man”—Figure 1 shows the clusters organized into the subsumption hierarchy, where we
represent each ℰℒ concept with the simple concept in natural language (the full list of concepts
is in the appendix). We find more or less the concepts one would expect as central concepts
in a family tree, with the exception of “Woman”, which one would have expected together
with “Man”, and the fact that “Grandson” is the only cluster representing children. This might
indicate a bias in the data, but also shows that more research is needed into utility measure and
alternative methods for computing the clustering. Note that the most general cluster “Thing” is
needed to allow for higher relative utility of the other clusters.

The next experiment was about getting a first idea of the feasibility of ℰℒ clustering, and
used ontologies from the OWL EL materialization track of the OWL reasoner competition
2015 [24, 25]. This corpus contains 110 ontologies in the OWL EL profile with non-empty
ABoxes. We removed ABoxes axioms that were not supported by our method (e.g. equivalence
assertions or assertions involving complex concepts), which resulted in 16 ontologies without

102 103 104 105 106
100

101

102

103

104

#individuals

#n
od

es
in

2-
co

m
pl

et
e

gr
ap

h
ABox vs. Simulation Graph Size

2-summarizing
2-complete

102 103 104 105 106

100

101

102

103

#individuals

ru
nt

im
e

(s
ec

.)

ABox Size vs. Runtime

Figure 2: Comparing number of individuals to nodes in 2-complete graph (left) and runtime of computing
the ℰℒ clusterings (right).

ABox, leaving us with 94 ontologies to be used in the experiment. For each ontology, we
computed the summarizing simulation graphs and attempted to compute 2-complete simulation
graphs, from which we then extract ℰℒ-clusterings of size 10 using the greedy algorithm.
We used a time limit of 10 minutes for each ontology, which resulted in 12 timeouts. The
detailed results are shown in the appendix. Section 5 visualizes how the ABox sizes relate
to the sizes of the 2-complete graphs and to the computation times. The number of nodes
in the summarizing simulation graph is often much smaller than the number of individuals,
and that the computation of clusters, even though so far only the summarizing step is really
optimized, is possible in short time in most cases. Quite remarkably, many very large ABoxes
resulted in summarizing simulation graphs with under 10 nodes, including the largest one with
almost 750,000 individuals which had only 5 nodes in the summarizing graph. This indicates
the potential of summarizing simulation graphs also for speeding up ABox reasoning.

6. Conclusion

While our summarization method is already quite efficient, we want to investigate more ded-
icated algorithms for computing the clusterings. One option is to integrate the computation
of products directly into the summarization implementation, to be able to compute products
more efficiently on the different levels of the simulation graphs. Another way could be to use
an incremental approach as done in the conceptual clustering algorithm for 𝒜ℒ𝒞 [9]. Our
selection of good clusterings is currently done in a greedy fashion—we want to investigate
whether encodings into answer set programming might allow us to compute globally optimal
solutions. Future evaluations should look into different corpora than the ORE corpus, for
instance knowledge graphs without an ontology. To understand whether our utility function
makes sense and compare with other alternatives, user studies will be required.

References

[1] B. Konev, C. Lutz, A. Ozaki, F. Wolter, Exact learning of lightweight description logic
ontologies, J. Mach. Learn. Res. 18 (2017) 201:1–201:63. URL: https://jmlr.org/papers/v18/
16-256.html.

[2] M. R. C. Duarte, B. Konev, A. Ozaki, ExactLearner: A tool for exact learning of ℰℒ
ontologies, in: M. Thielscher, F. Toni, F. Wolter (Eds.), Principles of Knowledge Represen-
tation and Reasoning: Proceedings of the Sixteenth International Conference, KR 2018,
Tempe, Arizona, 30 October - 2 November 2018, AAAI Press, 2018, pp. 409–414. URL:
https://aaai.org/ocs/index.php/KR/KR18/paper/view/18006.

[3] J. Lehmann, DL-Learner: Learning concepts in description logics, J. Mach. Learn. Res.
10 (2009) 2639–2642. URL: https://dl.acm.org/doi/10.5555/1577069.1755874. doi:10.5555/
1577069.1755874.

[4] G. Rizzo, N. Fanizzi, C. d’Amato, Class expression induction as concept space exploration:
From DL-Foil to DL-Focl, Future Gener. Comput. Syst. 108 (2020) 256–272. URL: https:
//doi.org/10.1016/j.future.2020.02.071. doi:10.1016/J.FUTURE.2020.02.071.

[5] S. Heindorf, L. Blübaum, N. Düsterhus, T. Werner, V. N. Golani, C. Demir, A. N. Ngomo,
Evolearner: Learning description logics with evolutionary algorithms, in: F. Laforest,
R. Troncy, E. Simperl, D. Agarwal, A. Gionis, I. Herman, L. Médini (Eds.), WWW ’22:
The ACM Web Conference 2022, Virtual Event, Lyon, France, April 25 - 29, 2022, ACM,
2022, pp. 818–828. URL: https://doi.org/10.1145/3485447.3511925. doi:10.1145/3485447.
3511925.

[6] A. N. Ngomo, C. Demir, N. J. Kouagou, S. Heindorf, N. Karalis, A. Bigerl, Class expression
learning with multiple representations, in: P. Hitzler, M. K. Sarker, A. Eberhart (Eds.),
Compendium of Neurosymbolic Artificial Intelligence, volume 369 of Frontiers in Artificial
Intelligence and Applications, IOS Press, 2023, pp. 272–286. URL: https://doi.org/10.3233/
FAIA230145. doi:10.3233/FAIA230145.

[7] B. ten Cate, M. Funk, J. C. Jung, C. Lutz, SAT-based PAC learning of description logic
concepts, in: Proceedings of the Thirty-Second International Joint Conference on Artificial
Intelligence, IJCAI 2023, 19th-25th August 2023, Macao, SAR, China, ijcai.org, 2023, pp.
3347–3355. URL: https://doi.org/10.24963/ijcai.2023/373. doi:10.24963/IJCAI.2023/
373.

[8] V. Sazonau, U. Sattler, G. Brown, General terminology induction in OWL, in: M. Arenas,
O. Corcho, E. Simperl, M. Strohmaier, M. d’Aquin, K. Srinivas, P. Groth, M. Dumontier,
J. Heflin, K. Thirunarayan, K. Thirunarayan, S. Staab (Eds.), The Semantic Web - ISWC
2015, Springer International Publishing, Cham, 2015, pp. 533–550.

[9] C. d’Amato, S. Staab, N. Fanizzi, F. Esposito, DL-Link: a conceptual clustering algorithm
for indexing description logics knowledge bases, Int. J. Semantic Comput. 4 (2010) 453–486.
URL: https://doi.org/10.1142/S1793351X10001085. doi:10.1142/S1793351X10001085.

[10] R. S. Michalski, R. E. Stepp, Learning from observation: Conceptual clustering, Machine
learning: An artificial intelligence approach (1983) 331–363.

[11] A. P. Suárez, J. F. M. Trinidad, J. A. Carrasco-Ochoa, A review of conceptual cluster-
ing algorithms, Artif. Intell. Rev. 52 (2019) 1267–1296. URL: https://doi.org/10.1007/
s10462-018-9627-1. doi:10.1007/S10462-018-9627-1.

https://jmlr.org/papers/v18/16-256.html
https://jmlr.org/papers/v18/16-256.html
https://aaai.org/ocs/index.php/KR/KR18/paper/view/18006
https://dl.acm.org/doi/10.5555/1577069.1755874
http://dx.doi.org/10.5555/1577069.1755874
http://dx.doi.org/10.5555/1577069.1755874
https://doi.org/10.1016/j.future.2020.02.071
https://doi.org/10.1016/j.future.2020.02.071
http://dx.doi.org/10.1016/J.FUTURE.2020.02.071
https://doi.org/10.1145/3485447.3511925
http://dx.doi.org/10.1145/3485447.3511925
http://dx.doi.org/10.1145/3485447.3511925
https://doi.org/10.3233/FAIA230145
https://doi.org/10.3233/FAIA230145
http://dx.doi.org/10.3233/FAIA230145
https://doi.org/10.24963/ijcai.2023/373
http://dx.doi.org/10.24963/IJCAI.2023/373
http://dx.doi.org/10.24963/IJCAI.2023/373
https://doi.org/10.1142/S1793351X10001085
http://dx.doi.org/10.1142/S1793351X10001085
https://doi.org/10.1007/s10462-018-9627-1
https://doi.org/10.1007/s10462-018-9627-1
http://dx.doi.org/10.1007/S10462-018-9627-1

[12] D. H. Fisher, Knowledge acquisition via incremental conceptual clustering, Machine
learning 2 (1987) 139–172.

[13] F. Distel, Learning description logic knowledge bases from data using methods from
formal concept analysis, Ph.D. thesis, Dresden University of Technology, 2011. URL: https:
//nbn-resolving.org/urn:nbn:de:bsz:14-qucosa-70199.

[14] D. Borchmann, F. Distel, F. Kriegel, Axiomatisation of general concept inclusions from
finite interpretations, J. Appl. Non Class. Logics 26 (2016) 1–46. URL: https://doi.org/10.
1080/11663081.2016.1168230. doi:10.1080/11663081.2016.1168230.

[15] F. Kriegel, Efficient axiomatization of OWL 2 EL ontologies from data by means of formal
concept analysis, in: M. J. Wooldridge, J. G. Dy, S. Natarajan (Eds.), Thirty-Eighth AAAI
Conference on Artificial Intelligence, AAAI 2024, Thirty-Sixth Conference on Innovative
Applications of Artificial Intelligence, IAAI 2024, Fourteenth Symposium on Educational
Advances in Artificial Intelligence, EAAI 2014, February 20-27, 2024, Vancouver, Canada,
AAAI Press, 2024, pp. 10597–10606. URL: https://doi.org/10.1609/aaai.v38i9.28930. doi:10.
1609/AAAI.V38I9.28930.

[16] R. Guimarães, A. Ozaki, C. Persia, B. Sertkaya, Mining ℰℒ⊥ bases with adaptable role
depth, J. Artif. Intell. Res. 76 (2023) 883–924. URL: https://doi.org/10.1613/jair.1.13777.
doi:10.1613/JAIR.1.13777.

[17] F. Hodo, S. Pranav, B. Sertkaya, Clustering knowledge graphs using concept lattices
(extended abstract), in: O. Kutz, C. Lutz, A. Ozaki (Eds.), Proceedings of the 36th Interna-
tional Workshop on Description Logics (DL 2023) co-located with the 20th International
Conference on Principles of Knowledge Representation and Reasoning and the 21st In-
ternational Workshop on Non-Monotonic Reasoning (KR 2023 and NMR 2023)., Rhodes,
Greece, September 2-4, 2023, volume 3515 of CEUR Workshop Proceedings, CEUR-WS.org,
2023. URL: https://ceur-ws.org/Vol-3515/abstract-12.pdf.

[18] F. Martel, A. Zouaq, Taxonomy extraction using knowledge graph embeddings and
hierarchical clustering, in: C. Hung, J. Hong, A. Bechini, E. Song (Eds.), SAC ’21: The
36th ACM/SIGAPP Symposium on Applied Computing, Virtual Event, Republic of Korea,
March 22-26, 2021, ACM, 2021, pp. 836–844. URL: https://doi.org/10.1145/3412841.3441959.
doi:10.1145/3412841.3441959.

[19] L. Guo, Q. Dai, Graph clustering via variational graph embedding, Pattern Recognit. 122
(2022) 108334. URL: https://doi.org/10.1016/j.patcog.2021.108334. doi:10.1016/J.PATCOG.
2021.108334.

[20] Q. Wang, Z. Mao, B. Wang, L. Guo, Knowledge graph embedding: A survey of approaches
and applications, IEEE Trans. Knowl. Data Eng. 29 (2017) 2724–2743. URL: https://doi.org/
10.1109/TKDE.2017.2754499. doi:10.1109/TKDE.2017.2754499.

[21] P. Koopmann, R. Bakel, M. Cochez, Towards conceptual clustering in ℰℒ with simulation
graphs — experimental data and extended version, 2025. URL: https://doi.org/10.5281/
zenodo.16794054. doi:10.5281/zenodo.16794054.

[22] N. Nikitina, P. Koopmann, Small is beautiful: Computing minimal equivalent ℰℒ concepts,
in: S. Singh, S. Markovitch (Eds.), Proceedings of the Thirty-First AAAI Conference on
Artificial Intelligence, February 4-9, 2017, San Francisco, California, USA, AAAI Press,
2017, pp. 1206–1212. URL: https://doi.org/10.1609/aaai.v31i1.10684. doi:10.1609/AAAI.
V31I1.10684.

https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa-70199
https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa-70199
https://doi.org/10.1080/11663081.2016.1168230
https://doi.org/10.1080/11663081.2016.1168230
http://dx.doi.org/10.1080/11663081.2016.1168230
https://doi.org/10.1609/aaai.v38i9.28930
http://dx.doi.org/10.1609/AAAI.V38I9.28930
http://dx.doi.org/10.1609/AAAI.V38I9.28930
https://doi.org/10.1613/jair.1.13777
http://dx.doi.org/10.1613/JAIR.1.13777
https://ceur-ws.org/Vol-3515/abstract-12.pdf
https://doi.org/10.1145/3412841.3441959
http://dx.doi.org/10.1145/3412841.3441959
https://doi.org/10.1016/j.patcog.2021.108334
http://dx.doi.org/10.1016/J.PATCOG.2021.108334
http://dx.doi.org/10.1016/J.PATCOG.2021.108334
https://doi.org/10.1109/TKDE.2017.2754499
https://doi.org/10.1109/TKDE.2017.2754499
http://dx.doi.org/10.1109/TKDE.2017.2754499
https://doi.org/10.5281/zenodo.16794054
https://doi.org/10.5281/zenodo.16794054
http://dx.doi.org/10.5281/zenodo.16794054
https://doi.org/10.1609/aaai.v31i1.10684
http://dx.doi.org/10.1609/AAAI.V31I1.10684
http://dx.doi.org/10.1609/AAAI.V31I1.10684

[23] R. Paige, R. E. Tarjan, Three partition refinement algorithms, SIAM Journal on Computing
16 (1987) 973–989. URL: https://doi.org/10.1137/0216062. doi:10.1137/0216062.

[24] B. Parsia, N. Matentzoglu, R. S. Gonçalves, B. Glimm, A. Steigmiller, The OWL reasoner
evaluation (ORE) 2015 competition report, J. Autom. Reason. 59 (2017) 455–482. URL:
https://doi.org/10.1007/s10817-017-9406-8. doi:10.1007/S10817-017-9406-8.

[25] N. Matentzoglu, B. Parsia, ORE 2015 reasoner competition corpus, 2015. URL: https://doi.
org/10.5281/zenodo.18578. doi:10.5281/zenodo.18578.

https://doi.org/10.1137/0216062
http://dx.doi.org/10.1137/0216062
https://doi.org/10.1007/s10817-017-9406-8
http://dx.doi.org/10.1007/S10817-017-9406-8
https://doi.org/10.5281/zenodo.18578
https://doi.org/10.5281/zenodo.18578
http://dx.doi.org/10.5281/zenodo.18578

	1 Introduction
	2 Preliminaries
	2.1 The Description Logic EL
	2.2 Model Theory

	3 EL Clusterings and Simulation Graphs
	3.1 Summarizing Simulation Graphs
	3.2 Complete Simulation Graphs
	3.3 Extracting EL-Clusterings

	4 Computing EL-Clusterings in Practice
	5 Evaluation
	6 Conclusion

