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1. Introduction

The Guarded Fragment (GF) of first-order logic (FO), introduced by Andréka et al. [1], general-
izes modal and description logics (DLs) to higher-arity relational vocabularies. Over the past 25
years, GF has become the canonical first-order fragment that balances expressive power with
attractive model-theoretic properties, such as the finite model property [2], preservation theo-
rems [3], and robust decidability under various extensions involving fixed-point operators [4]
or query languages [5]. Since classical (polyadic) multi-modal and description logic formulæ
embed naturally into GF via standard translations, this fragment serves as a versatile logical
framework central to both theoretical studies and applications in KR and databases.
However, not all widely-used families of modal and description logics (DLs) are expressible
within the scope of GF, as it cannot express properties such as transitivity or equivalence of
relations. Consequently, translating transitive description logics like those from the 𝒮 family
of DLs or modal logics interpreted over equivalence frames including S5, into the guarded
fragment is not directly possible. To overcome this limitation, Ganzinger et al. [6] initiated
the study of semantically-constrained guards, an extension of GF allowing certain relations—
confined to guards—to be interpreted with additional semantic constraints, notably transitivity
or equivalence. This direction spurred intensive research, yielding several positive results,
notably the 2ExpTime-completeness of GF extended with (conjunctions of) transitive guards
(consult the works of Szwast&Tendera [7], Kazakov [8] and Kieroński&Rudolph [9]), as well as
the two-variable fragment of GF augmented by transitive or equivalence closures of binary
guards, established by Michaliszyn and his co-authors [10, 11]. Check Tendera’s survey [12]
for a comprehensive overview. On the negative side, natural extensions of GF with equality

(GF≈), intended to capture popular description logics from the 𝒮ℛ family, turned out to
be undecidable. Examples include GF≈ with exponentiation (regular expressions that are
compositions of the same letter) [13] or associative compositional axioms [8]. The decidability
status of these logics without equality ≈ is still open. Consequently, there is no known decidable
extension of GF with semantically-constrained guards captures propositional dynamic logic
(PDL) and its generalizations such as the 𝒵 family [14] of DLs, PDL with intersection and
converse (ICPDL) [15], or its higher-arity extensions of DLs such as 𝒟ℒℛ [16].
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2. Our Contributions

We introduce and study a novel logic called RGF, which extends (equality- and constant-free)
GF by allowing ICPDL-programs as guards (cf. Def. 1). Our main result establishes that
Sat(RGF) is 2ExpTime-complete, matching the complexity of plain GF and ICPDL. This also
lifts decidability to several logics where it was previously known only in their two-variable
case. Our proof employs a fusion technique, reducing Sat(RGF) to instances of the satisfiability
problem in plain GF or two-variable RGF, which is in turn solvable via an encoding to ICPDL.

Theorem 1. The satisfiability problem for RGF is 2ExpTime-complete. ◀

We further address two questions: (i) Is the query entailment problem decidable for RGF?
(ii) Is there an expressive fragment of RGF of complexity lower than 2ExpTime? We answer
question (i) negatively, showing undecidability of conjunctive query entailment even for two-
variable fluted GF with a single transitive guard, substantially strengthening prior results
of Gottlob et al. [17, Thm. 1] on entailment of unions of conjunctive queries over GF2 with
transitive guards in three ways: our logic is more restricted (belongs to the so-called fluted
fragment), our queries do not use disjunction (we use conjunctive queries rather than the unions
thereof), and our proof is also applicable to the finite-model scenario (which remained open).

Theorem 2. Both finite and general CQ entailment problems are undecidable for RGF, already

for its fluted two-variable fragment with a single transitive guard. ◀

By fluted formulæ we mean index-normal formulae (on any branch of its syntax tree, the 𝑖-th
quantifier bounds precisely 𝑥𝑖) where any atom 𝛼(𝑥̄) in the scope of a quantifier bounding 𝑥𝑛
(but not 𝑥𝑛+1), the sequence 𝑥̄ is a suffix of the sequence 𝑥1, 𝑥2, . . . , 𝑥𝑛. Our undecidability
transfers to 𝒜ℒ𝒞 extended with unqualified existential restrictions with intersection of the
form ∃(r ∩ s).⊤, inclusion axioms of the form r ⊆ s ∪ t, and a single transitivity statement.

For (ii) we conduct a thorough case analysis, pinpointing when subfragments of RGF admit
lower complexity than 2ExpTime. We conclude that a novel forward variant of GF extended
with transitive closure is the largest (in a natural sense) ExpSpace-complete fragment of RGF.

Theorem 3 (Simplified statement). The satisfiability problem for the forward subfragment RGF
with the set of operators restricted to {·+, ·*, ?} is ExpSpace-complete. The inclusion of other

operators makes already the fluted two-variable fragment of RGF 2ExpTime-hard. ◀

3. Our Motivations

We explain our motivations behind the study of the GF with regular guards in the form of a Q&A.
¬ Why the guarded fragment (GF)?
Because GF is the canonical extension of modal and description logics to the setting of higher-
arity relations [18], heavily investigated in the last 25 years. GF is not only well-behaved
both computationally [2] and model-theoretically [19], but is also robust under extensions like
fixed points [4] or semantically-constrained guards [12]. It was studied also in the setting of
knowledge representation in multiple recent papers [20, 21, 22, 23, 24].



¬ Do we generalize any previously studied logics?
Yes, many of them. First, as GF encodes (via the standard translation, see e.g. Section 2.6.1
of Baader’s textbook 2017) multi-modal and description logics [18], our logic also encodes
(via an analogous translation) ICPDL and its subfragments such as 𝒜ℒ𝒞reg or 𝒮ℛℐ (Hor-
rocks et al. 2006). There also exists a natural translation from (counting-free fragment of)
𝒟ℒℛreg (Calvanese et al. 2008) to RGF. Second, there is a long tradition of studying GF
extended with semantically-constrained guards [12], i.e. distinguished relations (available only
as guards) interpreted as transitive (Ganzinger et al. 1999) or equivalence [27] relations, or as
transitive [10] or equivalence (Kieroński et al. 2017) closures of another relation (that may
also appear only as a guard). As one can simulate transitive or equivalence relation R with
S+ and (S ∪ S−)* for a fresh relation S, our logic strictly extends all of the mentioned logics.
Moreover, the mentioned papers concerning transitive and equivalence closures only focused
on the extensions of GF2 (two-variable GF), and hence our logic lifts them (without ≈) to
the case of full GF and provides the tight complexity bound. Other ideas concern GF with
exponentiation (regular expressions that are composition of the same letter) [13] or associative
compositional axioms [8] (i.e. axioms R ∘ S ⊆ T where R, S,T occurring only in guards). Both
of them can be easily simulated in our framework. Finally, GF with conjunctions of transitive
relations in guards [8] can be expressed in RGF by employing ∩ operator. All of this makes
RGF a desirable object of study.
¬ Are there any closely related but incomparable logics?
The closest logic is the Unary Negation Fragment [28] with regular-path expressions [29] UNreg,
together with its very recent generalizations with transitive closure operators [30] and guarded
negation [31]. All of these logics share 2ExpTime complexity of their (formula) satisfiability
problem, but their expressive powers are incomparable. Indeed, RGF is not able to express
conjunctive queries, while the other logics cannot express that R*-reachable elements are
B-connected. Yet another related logic is GNFPup by Benedikt et al. 2016, which extends
the guarded (negation) fragment [33] with fixed-point operators with unguarded parameters.
The syntax of GNFPup is complicated, but the logic seems to embed ICPDL. Unfortunately,
according to our understanding, such an encoding leads to a non-constant “pdepth” of the
resulting formulæ, leading to a non-elementary fragment of the logic. The expressive powers of
GNFPup and RGF are again incomparable and the separating examples are as before.

4. Our Logic
We work with structures over a fixed countably-infinite equality- and constant-free relational
signature Σ := ΣFO ·∪ ΣR , where all predicates in ΣR , called regular predicates, are binary. By
mutual induction, we define both RGF-programs and RGF-formulæ.

Definition 1 (RGF). RGF-programs are given by the grammar:

𝜋, 𝜌 ::= B | B̄ | 𝜋∘𝜌 | 𝜋∪𝜌 | 𝜋∩𝜌 | 𝜋* | 𝜋+ | 𝜙?,

where B ∈ ΣR and 𝜙 is an RGF-formula with a sole free variable. An RGF-guard 𝜗 for a formula

𝜙 is either an atom over ΣFO or 𝜋(𝑥𝑦) for some RGF-program 𝜋, such that free variables of 𝜗
include all free variables of 𝜙. The set RGF of RGF-formulæ is defined with the grammar:



𝜙,𝜙′ ::= A(𝑥̄) | ¬𝜙 | 𝜙 ∧ 𝜙′ | ∃𝑥𝜙(𝑥) | ∃𝑥̄(𝜗 ∧ 𝜙),

where A ∈ ΣFO and 𝜗 is an RGF-guard for 𝜙. The semantics of RGF-programs is:

Name Syntax of 𝜋 Semantics 𝜋A of 𝜋 in a structure A

Test / Predicate 𝜙? / B {(a, a) | A |= 𝜙[a]} / Binary relation
Converse operator 𝜋̄ {(b, a) | (a,b) ∈ 𝜋A}
Concatenation 𝜋∘𝜌 {(a, c) | ∃b.(a,b) ∈ 𝜋A ∧ (b, c) ∈ 𝜌A}
Union / Intersection 𝜋∪𝜌 / 𝜋∩𝜌 𝜋A ∪ 𝜌A / 𝜋A ∩ 𝜌A

Kleene star/plus 𝜋* / 𝜋+
⋃︀∞

𝑖=0(𝜋
𝑖)A /

⋃︀∞
𝑖=1(𝜋

𝑖)A,
where 𝜋0 := ⊤? and 𝜋𝑖+1 := (𝜋𝑖) ∘ 𝜋.

◀
Our logic generalizes a plethora of extensions of GF with semantically-constrained guards
(consult the introduction). For instance, transitive and equivalence relations in guards can
be simulated in RGF using R+ and (R ∪ R̄)* for a fresh binary relation R. Hence, GF+TG,
the extension ofGFwith transitive guards, is a fragment ofRGF. We explain our design choices.

¬ Why is the signature separated, i.e. Σ := ΣFO ·∪ ΣR?
To ensure that binary predicates fromΣR appear only in guards; otherwise, even the two-variable
guarded fragment with transitivity is undecidable [6, Th. 2].
¬ Why is the equality symbol ≈ excluded from Σ?
Its inclusion makes our logic undecidable, already for GF2 with compositional axioms [8,
Th. 5.3.1], conjunctions of transitive guards [8, Th. 5.3.2], or exponentiation [13, Th. 3.1].
¬ Why are constant symbols excluded from Σ?
They are expected to preserve decidability, especially given that the key theorem of 2ExpTime-
completeness of ICPDL [34, Th. 3.28] extends to Hybrid ICPDL.

5. Future Work
Future work may proceed along two directions. One promising path is to extend the ICPDL-
based guards to more expressive formalisms, such as linear Datalog or non-binary transitive
closure operators. This would help eliminate the asymmetry between the binary nature of regular
guards and the higher-arity relations allowed in GF. The alternative path is to tackle the finite
satisfiability problem for RGF. This problem is very challenging—even for minimal fragments of
ICPDL like LoopPDL—and has resisted resolution for over 40 years, indicating that significant
breakthroughs and new techniques will be required. A more pragmatic direction is to study
fragments ofRGFwith the FMP (the finite model property). While formulæ like ∀𝑥1∃𝑥2R(𝑥1𝑥2)
combined with either ¬∃𝑥1R+(𝑥1𝑥1) or ∀𝑥1𝑥2(R+(𝑥1𝑥1) → B(𝑥1𝑥2) ∧ ¬B(𝑥2𝑥1)) destroy
the FMP by enforcing infinite, non-loopable R-chains, one might hope that fluted RGF retains it.
Unfortunately, with a similar counter-examples, we show:

Lemma 1. For the set of allowed operators Op being either {·+, ?}, {·+, ·*}, {·+, ·̄}, or {·+, ∘}
we have that the fluted RGF with the operators in programs restricted to these from Op does not

have the finite model property. ◀

We can already prove that FRGF[·+] has the FMP and we are currently trying to extend our
approach to FRGF[·+,∩,∪]. More details are coming soon!
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