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Abstract
Bounded fitting is a general paradigm for learning logical formulas from positive and negative data
examples, that has received considerable interest recently. We investigate bounded fitting for concepts
formulated in the description logic 𝒜ℒ𝒞 and its syntactic fragments. We show that the underlying
size-restricted fitting problem is NP-complete for all studied fragments, even in the special case of a
single positive and a single negative example. By design, bounded fitting is an Occam algorithm and thus
is a sample-efficient PAC learning algorithm, regardless of the studied fragment. We complement this by
showing that efficient PAC learning is impossible under standard complexity theoretic assumptions, and
that other natural learning algorithms are typically not sample-efficient PAC learning algorithms. Finally,
we present an implementation of bounded fitting in 𝒜ℒ𝒞 and its fragments based on a SAT solver. We
discuss optimizations and compare our implementation to other concept learning tools.
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1. Introduction

Learning description logic (DL) concepts from given data examples is an important task when
working with large knowledge bases [1, 2]. For the purpose of this paper, an example is a pair
(ℐ, 𝑎) where ℐ is a finite interpretation (describing, e.g., a database or a knowledge graph) and
𝑎 is some individual in ℐ . Moreover, a DL concept 𝐶 fits a set 𝑃 of positive examples and a
set 𝑁 of negative examples if ℐ |= 𝐶(𝑎) for all (ℐ, 𝑎) ∈ 𝑃 and ℐ ̸|= 𝐶(𝑎) for all (ℐ, 𝑎) ∈ 𝑁 .
We mention three applications. First, the fitting concept may be used as an explanation of
the separation between good and bad “scenarios”, described by 𝑃 and 𝑁 , respectively. For
example, 𝑃 and 𝑁 could be data describing users who visited (resp., did not visit) a certain
page, and a fitting 𝐶 would explain the users’ behavior from their data. Second, under the
classical query-by-example paradigm [3, 4], a human user may reverse-engineer a DL concept to
be used as query by manually selecting elements they want to have returned (𝑃 ) or not returned
(𝑁 ), and the system comes up with an expression satisfying the demands. Finally, an ontology
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Input: Positive examples 𝑃 , negative examples 𝑁
1 for 𝑘 := 1, 2, . . . do
2 if there is a concept 𝐶 ∈ ℒ of size 𝑘 that fits 𝑃,𝑁 then
3 return 𝐶

Algorithm 1: Bounded Fitting for description logic ℒ.

engineer may seek a definition of some symbol 𝐴 satisfied in the interpretation, so they may
ask for a concept separating the instances of 𝐴 from the non-instances.

In this paper, we study the problem of learning concepts formulated in the description logic
𝒜ℒ𝒞, which is the basic logic underlying the web ontology language OWL 2 DL [5], and its
syntactic fragments. The importance of finding fitting description logic concepts has resulted in
both foundational work [6, 7, 8] and systems. While most systems are based on heuristic search
and refinement operators [9, 10, 11, 12, 13] or, more recently, also on neural techniques [14, 15],
we approach the problem via bounded fitting. Bounded fitting is a general paradigm for fitting
logical formulas to positive and negative examples that has been investigated recently for the
description logic ℰℒ [16] and a range of other logics like linear temporal logic LTL [17, 18] and
computation tree logic CTL [19]. Algorithm 1 provides an abstract description of bounded fitting
for a given description logic ℒ. It should be clear that, if any fitting concept exists, bounded
fitting always returns a fitting concept of minimal size, which is often a desirable property. From
the practical perspective, human users typically prefer shorter, that is, simpler concepts in the
applications sketched above. From a theoretical perspective, this property makes bounded fitting
an Occam algorithm which implies that it comes with probabilistic generalization guarantees
in Valiant’s probably approximately correct (PAC) learning framework [20, 21]. Intuitively,
this means that bounded fitting needs only few examples to be able to generalize to unseen
examples.

The basic DL 𝒜ℒ𝒞 provides the logical constructors conjunction ⊓, disjunction ⊔, negation ¬,
existential restriction ∃𝑟, and universal restriction ∀𝑟 to build complex concepts from concept
names and ⊥ and ⊤. Motivated by the fact that, depending on the application, one may not need
all concept constructors, fragments ℒ(𝑂) of 𝒜ℒ𝒞 have been studied which allow only a subset
𝑂 ⊆ {⊓,⊔,¬,∃,∀} of the available constructors. For instance, the mentioned DL ℰℒ is defined
by {⊓,∃}, another popular logic is ℱℒ0, which is defined by {⊓, ∀}. Bounded fitting has been
studied recently for ℰℒ, and we extend this study here to all other syntactical fragments.

The paper corresponding to this extended abstract has been accepted for publication at ISWC
2025 [22]. The full paper with all proof details is available on arXiv [23].

2. Contributions

Our main contributions are as follows. First, we study the size-restricted fitting problem: given
positive examples 𝑃 , negative examples 𝑁 , and a size bound 𝑘 in unary encoding, determine
whether there is a concept of size at most 𝑘 that fits 𝑃 and 𝑁 . Clearly, this is precisely the
problem to be solved in Line 2 of bounded fitting. Then, motivated by the ability of bounded
fitting to generalize well from few examples, we investigate the generalization abilities of
fitting algorithms for DLs ℒ(𝑂) in Valiant’s PAC learning framework. Finally, we provide an



implementation of bounded fitting for 𝒜ℒ𝒞 and its fragments, that relies on a SAT solver to
solve size-restricted fitting in Line 2 of bounded fitting. We give now a more detailed overview.

Complexity of size-restricted fitting. We show that size-restricted fitting is NP-complete
for 𝒜ℒ𝒞 and all its syntactic fragments ℒ(𝑂) such that 𝑂 contains at least ∃ or ∀. This was
known for the fragment ℰℒ [24]. Containment in NP can be shown by a simple guess and
check argument. The lower bound is more technical and rather strong: it applies already in the
case of only one positive and one negative example and over a signature consisting of two role
names and one concept name. It thus strengthens the mentioned result for ℰℒ which requires
a non-constant number of positive examples. The proof is by reduction from the hitting set
problem. The examples constructed in the reduction admit a fitting 𝒜ℒ𝒞 concept if and only if
there is a fitting ℒ(∃) concept, which means that it shows NP-hardness for all ℒ(𝑂) with 𝑂
containing ∃. NP-hardness for the other fragments follows by applying a duality principle.

Theorem 1. Size-restricted fitting for ℒ(𝑂) is NP-complete for every 𝑂 ⊆ {⊓,⊔,¬, ∃, ∀} with
{∃,∀} ∩ 𝑂 ̸= ∅. This already holds if only a single positive and a single negative example are
allowed, and over a signature consisting of two role names and one concept name.

Generalization. We investigate the learnability of 𝒜ℒ𝒞 concepts in Valiant’s PAC learning
framework [20]. A PAC learning algorithm is a fitting algorithm that, given sufficiently many
labeled examples drawn from an unknown distribution, returns a concept that generalizes well
(that is, has a small error when evaluated over the entire distribution) with high probability. We
call such an algorithm efficient if it runs in polynomial time and sample-efficient if a polynomial
number of examples suffices to ensure the described probabilistic generalization guarantees. For
a precise definition, see the full paper but also [25]. We start with observing that under reasonable
complexity theoretic assumptions, no ℒ(𝑂) admits an efficient PAC learning algorithm, that is,
an algorithm that runs in polynomial time and produces a concept that satisfies the definition
of PAC learning. This is stated in the following theorem.

Theorem 2. Let 𝑂 ⊆ {⊓,⊔,¬,∃,∀}. If there is an efficient PAC learning algorithm for ℒ(𝑂),
then:

1. NP = RP, if 𝑂 contains at least one of ∃/∀ and {⊓,⊔} ̸⊆ 𝑂;
2. RSA encryption is polynomial time invertible, if {⊓,⊔} ⊆ 𝑂.

We then analyze the generalization ability of fitting algorithms that have favorable properties
from a logical perspective in that they return fitting concepts that are most specific, most general,
or of minimal quantifier depth among all fitting concepts. More precisely, we investigate whether
there can be PAC learning algorithms with such properties that are sample-efficient. We show
that, with one exception, all such algorithms are not sample-efficient, and hence do not generalize
well. This was already known for the fragment ℰℒ of 𝒜ℒ𝒞 [16], and some of our proofs rely on
similar techniques. Our results are summarized by the following theorem.

Theorem 3. Let 𝑂 ⊆ {⊓,⊔,¬, ∃, ∀} be any set containing at least one of ∃/∀ and at least one of
⊓/⊔, and let 𝒜 be a fitting algorithm for ℒ(𝑂). Then 𝒜 is not a sample-efficient PAC learning
algorithm, if:



Table 1
Generalization results on SML-Benchmarks

Carcinogenesis Hepatitis Lymphography Mammographic Mutagenesis Nctrer

EvoLearner
0.53± 0.18 0.58± 0.01 0.81± 0.12 0.46± 0.00 0.78± 0.18 0.6± 0.04
7.2± 3.52 3.2,±1.03 19.6± 6.88 1.7± 0.48 3.5± 1.35 3.3± 0.95

CELOE
0.54± 0.01 0.41± 0.01 0.82± 0.11 0.46± 0.0 0.56± 0.2 0.6± 0.04
3.8± 0.42 4.6± 1.26 10.8± 0.42 1.7± 2.21 6.8± 0.63 3.9± 0.32

SParCEL
0.54± 0.1 n/a 0.74± 0.13 0.55± 0.02 0.73± 0.23 0.46± 0.08

860.1± 66.54 n/a 164.3± 49.48 178.2± 21.6 85.1± 9.35 65.4± 18.84

ALC-SAT+
0.55± 0.2 0.58± 0.01 0.8± 0.09 0.77± 0.05 0.81± 0.26 0.63± 0.07
6.4± 0.7 4± 1.7 9.9± 0.32 11.3± 2.06 9.4± 0.84 11.7± 0.95

1. 𝑂 ̸= {∃,⊔} and 𝒜 always returns a most specific fitting if one exists;
2. 𝑂 ̸= {∀,⊓} and 𝒜 always returns a most general fitting if one exists;
3. 𝒜 always returns a fitting of minimal quantifier depth if some fitting exists.

The exceptions in the theorem are the cases of 𝑂 = {∃,⊔} and 𝑂 = {∀,⊓}. For these
fragments, bounded fitting is a sample-efficient PAC learning algorithm that returns a most
specific or most general, respectively, fitting concept if it exists.

Implementation. We implemented bounded fitting for 𝒜ℒ𝒞 and its fragments using a SAT
solver to decide the NP-complete size-restricted fitting problems by encoding size-restricted
fitting into a propositional formula.1 We present two optimizations of the basic encoding,
one where the structure of concepts is precomputed and then supplied to the SAT solver and
another, where types of elements are used instead of individual concept names. Additionally, our
implementation supports approximate fitting, the optimization variant of the fitting problem,
where one searches for a concept that fits as many positive and negative examples as possible.

We compare our implementation ALC-SAT+ to other systems that support learning of 𝒜ℒ𝒞
concepts, namely CELOE [12], SParCEL [10], and EvoLearner [9], considering both exact fitting
and approximate fitting. For evaluating exact fitting we generated sets of positive and negative
examples from a fragment of the YAGO knowledge graph [26], see the full paper for details.
For approximate fitting, we compared the systems on the SML benchmarks [27]. We measured
the accuracy and length of the returned concepts using 10-fold cross validation. Our results
on the SML benchmarks are shown in Table 1 where the first line in each cell is the accuracy
and the second line is the length of the returned concept; in both cases, the ±-term denotes
the standard deviation. Our tool achieves competitive values for both accuracy and concept
length. In some instances, ALC-SAT+ may return a larger concept compared to the other tools,
however, this means that the accuracy reported cannot be achieved with a smaller concept.
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