
A Rule-Based Approach to Specifying Preferences
over Conflicting Facts and Querying Inconsistent
Knowledge Bases (Extended Abstract)
Meghyn Bienvenu

1
, Camille Bourgaux

2
, Katsumi Inoue

3
and Robin Jean

1

1Univ. Bordeaux, CNRS, Bordeaux INP, LaBRI, UMR 5800, Talence, France
2DI ENS, ENS, CNRS, PSL University & Inria, Paris, France
3National Institute of Informatics, Tokyo, Japan

Abstract
This extended abstract summarizes our KR’25 paper [1], where we introduce a declarative rule-based

framework for specifying and computing a priority relation between conflicting facts. As the expressed

preferences may contain undesirable cycles, we consider the problem of determining when a set of

preference rules always yields an acyclic relation, and we also explore a pragmatic approach that extracts

an acyclic relation by applying various cycle removal techniques. As a step towards an end-to-end system

for querying inconsistent knowledge bases, we present a preliminary implementation and experimental

evaluation of the framework, which employs answer set programming to evaluate the preference rules,

apply the desired cycle resolution techniques to obtain a priority relation, and answer queries under

prioritized-repair semantics.

Keywords
inconsistency handling, preference specification, inconsistency-tolerant query answering, ontology-

mediated query answering, answer set programming

1. Introduction

Inconsistency-tolerant semantics are a well-established approach to querying data inconsistent

w.r.t. some constraints, both in the relational database and ontology-mediated query answering

settings (cf. recent surveys [2, 3]). Such semantics typically rely on (subset) repairs, defined

as maximal subsets of the data consistent w.r.t. the constraints. The most well-known, called

the AR semantics in the KR community and corresponding to consistent query answering in

the database community, considers that a Boolean query holds true if it holds in every repair.

The more cautious IAR semantics amounts to querying the repairs intersection, and the less

cautious brave semantics only requires that the query holds in some repair.

Since an inconsistent dataset may have a lot of repairs, several notions of preferred repairs

have been proposed in the literature, to restrict the possible worlds considered to answer queries,

for example by taking into account some information about the reliability of the data [4, 5, 6, 7, 8].

In particular, since its introduction by [9], the framework of prioritized databases, in which

DL 2025: 38th International Workshop on Description Logics, September 3–6, 2025, Opole, Poland
" meghyn.bienvenu@u-bordeaux.fr (M. Bienvenu); camille.bourgaux@ens.fr (C. Bourgaux); inoue@nii.ac.jp

(K. Inoue); robin.jean@u-bordeaux.fr (R. Jean)

© 2025 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

mailto:meghyn.bienvenu@u-bordeaux.fr
mailto:camille.bourgaux@ens.fr
mailto:inoue@nii.ac.jp
mailto:robin.jean@u-bordeaux.fr
https://creativecommons.org/licenses/by/4.0
https://ceur-ws.org
https://ceur-ws.org

a (binary acyclic) priority relation between conflicting facts is used to define three kinds of

optimal repairs, has attracted attention, with numerous theoretical results [10, 11, 12, 13], and an

implementation [14]. However, the crucial question of obtaining the priority relation was left

unaddressed, preventing the adoption of this framework in practice. Indeed, it is not realistic to

expect users to manually input a binary relation between the facts.

2. Specifying Priority Relations via Rules

We propose a framework for specifying a priority relation between conflicting facts. We use

preference rules to state that, when some conditions are satisfied, a fact should generally be

preferred to another fact. The rule conditions may naturally refer to the presence (or absence)

of facts in the dataset. However, typically we may also want to exploit information about the

facts themselves (e.g. the date they were added), provided in metadata.

Example 1. Consider a DL knowledge base 𝒦ex = (𝒟ex, 𝒯ex) about a university. The ontology
expresses that associate and full professors (APr and FPr) are faculty members (Fac) and clerical
staff workers (Cleric) are administrative staff workers (Adm). Moreover, one cannot be both an
associate and a full professor, or an administrative staff worker and a faculty member.

𝒯ex = {APr ⊑ Fac,FPr ⊑ Fac,APr ⊑ ¬FPr, ∃Teach ⊑ Fac,Cleric ⊑ Adm,Adm ⊑ ¬Fac}
𝒟ex = {APr(𝑎),FPr(𝑎),Cleric(𝑎),Adm(𝑎),Teach(𝑎, 𝑐),Adm(𝑏),APr(𝑏)}

We associate to 𝒦ex a meta-database ℳex = (idex,ℱex), where idex is a function that associates
an identifier to each fact of 𝒟ex: idex(APr(𝑎)) = 1, idex(FPr(𝑎)) = 2, idex(Cleric(𝑎)) = 3,
idex(Adm(𝑎)) = 4, idex(Teach(𝑎, 𝑐)) = 5, idex(Adm(𝑏)) = 6, idex(APr(𝑏)) = 7, and ℱex

records the year that facts have been added to the university database:

{Date(1, 2014),Date(2, 2025),Date(3, 2013), <(2013, 2014), <(2013, 2025), <(2014, 2025)}.

We then define the following preference rules.

Date(𝑥1, 𝑦1)∧Date(𝑥2, 𝑦2)∧<(𝑦2, 𝑦1)→pref(𝑥1, 𝑥2)

𝑥1 = id(FPr(𝑦)) ∧ 𝑥2 = id(APr(𝑦)) → pref(𝑥1, 𝑥2)

𝑌 ⊑ Adm ∧ 𝑍 ⊑ Fac ∧ ¬(∃𝑧Teach(𝑦, 𝑧)) ∧ 𝑥1 = id(𝑌 (𝑦)) ∧ 𝑥2 = id(𝑍(𝑦))→ pref(𝑥1, 𝑥2)

The first rule states a general preference for keeping more recently added facts. The second one states
if we have both FPr(𝑝) and APr(𝑝), we prefer to keep FPr(𝑝), capturing the domain knowledge
that associate professors are promoted into full professors. The third rule states that if a person is
declared to belong both to a subclass of Adm and a subclass of Fac, but there is no Teach-fact for
the person in the dataset, then the Adm-related facts are deemed more reliable. Observe that it uses
ontology axioms with variables in order to simplify rule formulation (avoiding the need to write
separate rules for every pair of subclasses of Adm and Fac). These three preference rules induce the
following preferences over the facts of 𝒟ex, designated by their identifiers:

{pref(2, 1), pref(2, 3), pref(1, 3), pref(6, 7)}.

Given a set of preference rules Σ, let ≻Σ be the binary relation over facts obtained from the

preferences over facts induced by Σ, restricted to facts that appear together in some conflict

(minimal set of facts inconsistent with the logical theory 𝒯). This relation may still fail to be a

priority relation if it contains a cycle, as priority relations are required to be acyclic. We explore

two complementary approaches to tackling this issue: identifying preference rules which are

guaranteed to yield an acyclic relation, and employing different methods to extract an acyclic

sub-relation from ≻Σ.

Checking acyclicity of preference rules We show that, given a logical theory 𝒯 , the problem

of deciding whether a set of preference rules Σ yields an acyclic ≻Σ for every dataset and

meta-database is undecidable in general. However, for DL-Lite ontologies and preference rules

whose bodies are essentially conjunctive queries, this problem is in coNP.

Resolving cycles to get a priority relation Ideally the preference ruleset Σ would always

yield an acyclic ≻Σ, but this cannot be assumed in general. Furthermore, cycles can naturally

arise when users create rules that capture different criteria, e.g. prefer more recent facts and

prefer facts from more trusted sources. To ensure acyclicity in such cases, one would need to

create more complex rules whose bodies consider different combinations of the criteria, making

rules much harder for users to specify and understand. We thus advocate a pragmatic approach:

give users free rein to specify preferences as they see fit, then apply cycle resolution techniques

to extract a suitable acyclic sub-relation should any cycles arise. To allow for a more fine-grained

specification of the preferences, we assume that Σ is partitioned into priority levels Σ1, . . . ,Σ𝑛,

so that a preference induced by a preference rule from Σ𝑖 is considered more important than

one induced by a preference rule from Σ𝑗 with 𝑗 > 𝑖, and will thus be preferably kept in the

cycle elimination process. Given two facts 𝛼 and 𝛽 such that 𝛼 ≻Σ 𝛽, we denote by level(𝛼, 𝛽)
the minimal index 𝑖 such that 𝛼 ≻Σ𝑖 𝛽. We consider four cycle resolution techniques:

• Going up (≻𝑢
): Let ≻𝑢:= ∅ and 𝑖 := 1. Then while ≻𝑢∪≻Σ𝑖 is acyclic, let ≻𝑢:=≻𝑢∪≻Σ𝑖

and increment 𝑖.

• Going down (≻𝑑
): Let≻𝑑:=≻Σ and 𝑖 := 𝑛. Then while≻𝑑

is cyclic, let≻𝑑:=≻𝑑 ∖{(𝛼, 𝛽) |
level(𝛼, 𝛽) = 𝑖, (𝛼, 𝛽) is in a cycle w.r.t. ≻𝑑} and decrement 𝑖.

• Refined going up (≻𝑟𝑢
): Let ≻𝑟𝑢:=≻Σ1 , then remove every (𝛼, 𝛽) that occurs in a cycle

w.r.t. ≻Σ1 . Then for 𝑖 = 2 to 𝑛, add to ≻𝑟𝑢
all pairs (𝛼, 𝛽) such that level(𝛼, 𝛽) = 𝑖 and

(𝛼, 𝛽) does not belong to any cycle w.r.t. ≻𝑟𝑢∪≻Σ𝑖 .

• Grounded (≻𝑔
): Let ≻𝑔:= ∅. Then until a fixpoint is reached, add to ≻𝑔

all pairs (𝛼, 𝛽)
such that 𝛼 ≻Σ 𝛽 and for every cycle 𝑐 of ≻Σ containing (𝛼, 𝛽), either there is (𝛾, 𝛿) ∈ 𝑐
such that level(𝛼, 𝛽) < level(𝛾, 𝛿), or there is (𝛾, 𝛿) ∈ 𝑐 such that ≻𝑔 ∪{(𝛾, 𝛿)} is cyclic.

We relate these cycle removal strategies to notions that have been proposed in the literature

to select a single consistent set of facts from a knowledge base whose dataset is partitioned into

priority levels [15, 12], and show that ≻𝑢⊆≻𝑑⊆≻𝑔
and ≻𝑢⊆≻𝑑⊆≻𝑟𝑢

, and that each of these

relations can be computed in polynomial time from the relations ≻Σ𝑖 .

3. ASP Implementation and Experiments

We implement our approach using answer set programming (ASP) [16, 17] to evaluate the

preference rules, apply the desired cycle resolution techniques to obtain a priority relation, and

answer queries under optimal repair-based semantics (AR, IAR or brave semantics based on

Pareto- or completion-optimal repairs), towards an end-to-end system for querying inconsistent

knowledge bases. Our system takes as input logic programs representing the input, and computes

the query answers under the chosen semantics w.r.t. ≻𝑥
for the chosen 𝑥 ∈ {𝑢, 𝑑, 𝑟𝑢, 𝑔}. All

building blocks can be encoded into ASP programs that a Python program combines and

passes to the ASP solver clingo [18] to check whether the resulting program has a stable model.

However, we found more efficient in practice to split the computation into several steps and

implement some of them in Python. Our approach applies to any logical theory 𝒯 such that:

1. there exists a set Inc(𝒯) of rules of the form 𝑞 → ⊥ with 𝑞 a Boolean CQ, such that for

every dataset 𝒟, (𝒟, 𝒯) |= ⊥ iff there exists 𝑞 → ⊥ ∈ Inc(𝒯) such that 𝒟 |= 𝑞; and

2. for every CQ 𝑞(𝑥⃗) there exists a set Rew(𝑞, 𝒯) of rules of the form 𝑞′(𝑥⃗) → 𝑞(𝑥⃗) with 𝑞′

a CQ such that for every 𝒟 s.t. (𝒟, 𝒯) ̸|= ⊥ and tuple 𝑎⃗, (𝒟, 𝒯) |= 𝑞(𝑎⃗) iff there exists

𝑞′(𝑥⃗) → 𝑞(𝑥⃗) ∈ Rew(𝑞, 𝒯) s.t. (𝒟, 𝒯) |= 𝑞′(𝑎⃗).

These conditions are fulfilled, e.g., when 𝒯 is a set of denial constraints (then, Inc(𝒯) = 𝒯
and Rew(𝑞, 𝒯) = {𝑞 → 𝑞}), or when 𝒯 is a DL-Lite ontology. Regarding preference rules, we

handle rules whose bodies are CQs with negation and comparison operators. We expect that

the KB 𝒦 = (𝒟, 𝒯), meta-database ℳ = (id,ℱ), preference rules Σ = Σ1 ∪ · · · ∪ Σ𝑛, and

query 𝑞 are given as ASP programs.

Our main goal is to compare the different approaches to obtaining a priority relation from

preferences rules, in terms of run time and size of the priority relation. We also compare our

ASP implementation of the optimal repair-based semantics with orbits, the existing SAT-based

implementation. We use the CQAPri benchmark [19], a synthetic benchmark adapted from

LUBM
∃
20 [20] to evaluate inconsistency-tolerant query answering over DL-Lite KBs. We also

consider its extension with two priority relations given by the orbits benchmark [14] for the

comparison with orbits, and add a denial constraint to experiment with non-binary conflicts.

For the meta-data, we randomly generate facts of the form date(id(𝛼), 𝑛), source(id(𝛼), 𝑘)
and reliability(𝑘,𝑚). We define four preference rules which express that one prefers more

recent facts, facts with a more reliable source, FPr(𝑦) over APr(𝑦) facts, and APr(𝑦) over

GrSt(𝑦) facts, and partition the rules in one, two or three priority levels.

We were not able to compute ≻𝑟𝑢
even on the simplest case because it overflows the number

of atoms clingo can handle. However, we managed to compute the other priority relations for

almost all small datasets (>75K) and several medium size datasets (>463K), even in cases with

a large proportion of facts in conflict. Interestingly, on all instances for which we computed

them, ≻𝑔
never compares more than 5% more pairs of facts than ≻𝑑

, while ≻𝑢
is often reduced

to the empty relation. From a computational point of view, ≻𝑑
is significantly faster to compute

than ≻𝑔
and ≻𝑢

. This indicates that ≻𝑑
may be a good method to use in practice. Regarding

the computation of optimal repair-based semantics, our system is by far slower than orbits

but we note that we manage to answer some queries under AR and brave semantics based on

completion-optimal repairs when orbits runs out of time or memory.

Acknowledgments

This work was supported by the ANR AI Chair INTENDED (ANR-19-CHIA-0014).

References

[1] M. Bienvenu, C. Bourgaux, K. Inoue, R. Jean, A rule-based approach to specifying prefer-

ences over conflicting facts and querying inconsistent knowledge bases, in: Proceedings

of KR (to appear), 2025.

[2] L. E. Bertossi, Database repairs and consistent query answering: Origins and further

developments, in: Proceedings of PODS, 2019.

[3] M. Bienvenu, A short survey on inconsistency handling in ontology-mediated query

answering, Künstliche Intelligenz 34 (2020) 443–451.

[4] A. Lopatenko, L. E. Bertossi, Complexity of consistent query answering in databases under

cardinality-based and incremental repair semantics, in: Proceedings of ICDT, 2007.

[5] J. Du, G. Qi, Y. Shen, Weight-based consistent query answering over inconsistent SHIQ

knowledge bases, Knowl. Inf. Syst. 34 (2013) 335–371.

[6] M. Bienvenu, C. Bourgaux, F. Goasdoué, Querying inconsistent description logic knowledge

bases under preferred repair semantics, in: Proceedings of AAAI, 2014.

[7] M. Calautti, S. Greco, C. Molinaro, I. Trubitsyna, Preference-based inconsistency-tolerant

query answering under existential rules, Artif. Intell. 312 (2022) 103772.

[8] T. Lukasiewicz, E. Malizia, C. Molinaro, Complexity of inconsistency-tolerant query

answering in datalog+/- under preferred repairs, in: Proceedings of KR, 2023.

[9] S. Staworko, J. Chomicki, J. Marcinkowski, Prioritized repairing and consistent query

answering in relational databases, Annals of Mathematics and Artificial Intelligence

(AMAI) 64 (2012) 209–246.

[10] B. Kimelfeld, E. Livshits, L. Peterfreund, Detecting ambiguity in prioritized database

repairing, in: Proceedings of ICDT, 2017.

[11] B. Kimelfeld, E. Livshits, L. Peterfreund, Counting and enumerating preferred database

repairs, Theor. Comput. Sci. 837 (2020) 115–157.

[12] M. Bienvenu, C. Bourgaux, Querying and repairing inconsistent prioritized knowledge

bases: Complexity analysis and links with abstract argumentation, in: Proceedings of KR,

2020.

[13] M. Bienvenu, C. Bourgaux, Inconsistency handling in prioritized databases with uni-

versal constraints: Complexity analysis and links with active integrity constraints, in:

Proceedings of KR, 2023.

[14] M. Bienvenu, C. Bourgaux, Querying inconsistent prioritized data with ORBITS: algorithms,

implementation, and experiments, in: Proceedings of KR, 2022.

[15] S. Benferhat, Z. Bouraoui, K. Tabia, How to select one preferred assertional-based repair

from inconsistent and prioritized DL-Lite knowledge bases?, in: Proceedings of IJCAI,

2015.

[16] V. Lifschitz, Answer Set Programming, Springer, 2019. URL: https://doi.org/10.1007/

978-3-030-24658-7. doi:10.1007/978-3-030-24658-7.

https://doi.org/10.1007/978-3-030-24658-7
https://doi.org/10.1007/978-3-030-24658-7
http://dx.doi.org/10.1007/978-3-030-24658-7

[17] M. Gebser, R. Kaminski, B. Kaufmann, T. Schaub, Answer Set Solving in Practice, Synthe-

sis Lectures on Artificial Intelligence and Machine Learning, Morgan & Claypool Pub-

lishers, 2012. URL: https://doi.org/10.2200/S00457ED1V01Y201211AIM019. doi:10.2200/
S00457ED1V01Y201211AIM019.

[18] M. Gebser, B. Kaufmann, R. Kaminski, M. Ostrowski, T. Schaub, M. Schneider, Potassco:

The potsdam answer set solving collection, AI Commun. 24 (2011) 107–124.

[19] C. Bourgaux, Inconsistency Handling in Ontology-Mediated Query Answering. (Ges-

tion des incohérences pour l’accès aux données en présence d’ontologies), Ph.D. thesis,

University of Paris-Saclay, France, 2016.

[20] C. Lutz, I. Seylan, D. Toman, F. Wolter, The combined approach to OBDA: Taming role

hierarchies using filters, in: Proceedings of ISWC, 2013.

https://doi.org/10.2200/S00457ED1V01Y201211AIM019
http://dx.doi.org/10.2200/S00457ED1V01Y201211AIM019
http://dx.doi.org/10.2200/S00457ED1V01Y201211AIM019

	1 Introduction
	2 Specifying Priority Relations via Rules
	3 ASP Implementation and Experiments

