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1. Introduction

In many areas of computer science and AI, a fundamental problem is to fit a formal object

to a given collection of examples. In inductive program synthesis, for instance, one wants to

find a program that complies with a given collection of examples of input-output behavior [1].

In machine learning, fitting a model to a given set of examples is closely linked to PAC-style

generalization guarantees [2]. And in database research, the query-by-example paradigm asks

to find a query that fits a given set of data examples [3].

In this extended abstract, we study the problem of fitting an ontology formulated in a

description logic (DL) to a given collection of positive and negative examples. Our concrete

setting is motivated by the paradigm of ontology-mediated querying where data is enriched by

an ontology that provides domain knowledge, aiming to return more complete answers and

to bridge heterogeneous representations in the data [4, 5]. Guided by this application, we use

labeled examples that take the form (𝒜, 𝑞) where 𝒜 is an ABox (in other words: a database)

and 𝑞 is a Boolean query. We then seek an ontology 𝒪 that satisfies 𝒜 ∪𝒪 |= 𝑞 for all positive

examples (𝒜, 𝑞) and 𝒜 ∪ 𝒪 ̸|= 𝑞 for all negative examples (𝒜, 𝑞). The fact that 𝑞 is required

to be Boolean is not a restriction since our queries may contain individual constants from the

ABox.

Example 1. Consider the positively labeled examples

({authorOf(𝑎, 𝑏),Publication(𝑏)}, Author(𝑎)),
({Reviewer(𝑎)}, ∃𝑥 reviews(𝑎, 𝑥) ∧ Publication(𝑥)),

and ({Publication(𝑎)}, Confpaper(𝑎) ∨ Jarticle(𝑎)).

An 𝒜ℒ𝒞-ontology that fits these examples (with no negative examples) is

𝒪 = { ∃authorOf.Publication ⊑ Author, Reviewer ⊑ ∃reviews.Publication,
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Publication ⊑ Confpaper ⊔ Jarticle }.

There are, however, many other fitting 𝒜ℒ𝒞-ontologies, including 𝒪⊥ = {⊤ ⊑ ⊥} and, say,
𝒪′ = 𝒪 ∪ {Author ⊑ ∃authorOf.Reviewer}. We can make both of them non-fitting by adding
the negative example ({Author(𝑎)}, ∃𝑥 authorOf(𝑎, 𝑥) ∧ Reviewer(𝑥)).

A main application of fitting ontologies is to assist with ontology construction and engineer-

ing. This is in the spirit of several other proposals that have the same aim, such as ontology

construction and completion using formal concept analysis [6, 7, 8] and Angluin’s framework

of exact learning [9], see also the survey of these and related approaches in [10]. We remark

that there is a large literature on fitting DL concepts (rather than ontologies) to a collection

of examples, sometimes referred to as concept learning. These have been investigated from

a practical angle [11, 12, 13], and from a foundational perspective [14, 15, 16, 17]. Concepts

can be viewed as the building blocks of an ontology and in fact concept fitting also has the

support of ontology engineering as a main aim. The techniques needed for concept fitting and

ontology fitting are, however, quite different, and to the best of our knowledge, fitting problems

for ontologies have not yet been studied.

As ontology languages, we concentrate on the expressive yet fundamental DLs 𝒜ℒ𝒞 and

𝒜ℒ𝒞ℐ , and as query languages for examples we consider atomic queries (AQs), conjunctive

queries (CQs), full CQs (CQs without quantified variables), and unions of conjunctive queries

(UCQs).

We formally define what we mean by ontology fitting. Let 𝒬 be a query language such as

𝒬 = AQ or 𝒬 = CQ. An ABox-𝒬 example is a pair (𝒜, 𝑞) with 𝒜 a ABox
1

and 𝑞 a query from 𝒬
such that all individual names that appear in 𝑞 are from ind(𝒜), the individuals appearing in 𝒜.

By a collection of labeled examples we mean a pair 𝐸 = (𝐸+, 𝐸−) of finite sets of examples. The

examples in 𝐸+
are the positive examples and the examples in 𝐸−

are the negative examples. We

say that an 𝒜ℒ𝒞 or 𝒜ℒ𝒞ℐ ontology 𝒪 fits 𝐸 if 𝒜∪𝒪 |= 𝑞 for all (𝒜, 𝑞) ∈ 𝐸+
and 𝒜∪𝒪 ̸|= 𝑞

for all (𝒜, 𝑞) ∈ 𝐸−
.

Let ℒ be an ontology language, such as ℒ = 𝒜ℒ𝒞ℐ , and 𝒬 a query language. Then (ℒ,𝒬)-
ontology fitting is the problem to decide, given as input a collection of labeled ABox-𝒬 exam-

ples 𝐸, whether 𝐸 admits a fitting ℒ-ontology.

For all of the resulting combinations, we provide effective characterizations and determine

the precise complexity of (ℒ,𝒬)-ontology fitting. The algorithms that we use to prove the

upper bounds are able to produce concrete fitting ontologies.

2. Main Contributions

As a starting point, we study an ontology fitting problem in which the examples are only ABoxes

and where we seek an ontology that is consistent with the positive examples and inconsistent

with the negative ones. To characterize fitting existence for these consistency examples, we

make use of the established connection between ontology-mediated querying and constraint

satisfaction problems (CSPs) from [18], and obtain the following.

1

We do not admit compound concepts in ABoxes.



Theorem 1. Let 𝐸 = (𝐸+, 𝐸−) be a collection of labeled ABox examples, ℒ ∈ {𝒜ℒ𝒞,𝒜ℒ𝒞ℐ},
and 𝒜+ =

⨄︀
𝐸+. Then the following are equivalent:

1. 𝐸 admits a fitting ℒ-ontology;

2. 𝒜 ̸→ 𝒜+ for all 𝒜 ∈ 𝐸−.

This characterization directly provides a coNP algorithm to decide fitting existence. Intu-

itively, a ontology that fits the examples can be derived from 𝒜+
. We obtain a corresponding

lower bound via reduction from the digraph homomorphism problem.

For ABox-AQ examples, the role of the positive and negative examples reverses, as now

a fitting ontology 𝒪 must be consistent with the ABox 𝒜 in a negative example (𝒜, 𝑄(𝑎)),
as otherwise 𝒜 ∪ 𝒪 |= 𝑄(𝑎). Additionally, the positive examples act as “rules”, meaning

that for some positive example (𝒜, 𝑄(𝑎)), whenever 𝒜 can be homomorphically found in

𝒜− :=
⨄︀

(𝒜,𝑄(𝑎))∈𝐸− 𝒜, any fitting ontology must derive 𝑄 at the image of 𝑎.
2

To account for

this, we introduce the notion of completions which enrich 𝒜−
with additional concept assertions

and enable us to precisely characterize fitting existence in the setting of AQs. Let 𝐸 = (𝐸+, 𝐸−)
be a collection of labeled ABox-AQ examples. A completion for 𝐸 is an ABox 𝒞 that extends 𝒜−

by assertions of the form 𝑄(𝑏), with 𝑏 ∈ ind(𝒜−) and 𝑄 a concept name that occurs as an AQ

in 𝐸+
.

Theorem 2. Let 𝐸 = (𝐸+, 𝐸−) be a collection of labeled ABox-AQ examples and let ℒ ∈
{𝒜ℒ𝒞,𝒜ℒ𝒞ℐ}. Then the following are equivalent:

1. 𝐸 admits a fitting ℒ-ontology;

2. there is a completion 𝒞 for 𝐸 such that

a) for all (𝒜, 𝑄(𝑎)) ∈ 𝐸+: if ℎ is a homomorphism from 𝒜 to 𝒞, then 𝑄(ℎ(𝑎)) ∈ 𝒞;

b) for all (𝒜, 𝑄(𝑎)) ∈ 𝐸−: 𝑄(𝑎) ̸∈ 𝒞.

Note that an algorithm that directly follows this characterization yields a Σ𝑝
2 upper bound.

We obtain a coNP upper bound via a more careful algorithm that does not blindly guess a

suitable completion, but constructs one step-by-step. For this the algorithm starts with 𝒜−
, and

then extends it by guessing, for some positive ABox-AQ example (𝒜, 𝑄(𝑎)), a homomorphisms

ℎ from 𝒜 to 𝒜−
, and then adding 𝑄(ℎ(𝑎)). We show coNP-hardness using a similar reduction

as in the consistency based setting.

Theorem 3. Let ℒ ∈ {𝒜ℒ𝒞,𝒜ℒ𝒞ℐ}. Then (ℒ, AQ)-ontology fitting is coNP-complete.

Ontology fitting for ABox-FullCQ examples has similar properties as ABox-AQ case. One

notable difference is that ABox-FullCQ examples can force fitting ontologies to be inconsistent

with their ABoxes.

Example 2. Consider a positive ABox-FullCQ example (𝒜, 𝑟(𝑎, 𝑎)) with 𝑟(𝑎, 𝑎) /∈ 𝒜. Every
𝒜ℒ𝒞ℐ-ontology 𝒪 with 𝒜 ∪𝒪 |= 𝑟(𝑎, 𝑎) must be inconsistent with 𝒜.
2

The homomorphisms used here are not required to be the identity on ABox individuals (which would, in fact,

trivialize them).



Thus, we arrive at a characterization that extends the ABox-AQ case with considerations

for consistency. A modest modification of the AQ-algorithm then shows that (ℒ, FullCQ)-

ontology fitting is coNP-complete. We remark that the obtained complexities for ontology

fitting are lower than the complexities of the associated query entailment problems, which are

ExpTime-complete for the cases discussed so far [19].

For ABox-CQ and ABox-UCQ examples, the intuition that positive examples behave like

“rules” persists, but the presence of quantified variables results in higher expressive power. In

fact, positive examples (𝒜, 𝑞) now behave similarly to existential rules: if 𝒜 is homomorphically

found somewhere in the completion, then 𝑞 must also be found there in a certain slightly unusual

sense made precise in the paper that, notably, treats quantified variables in 𝑞 in a similar way as

existentially quantified variables in the head of an existential rule. It is thus easy to enforce

that the completion contains, say, an infinite path. The completions that we construct in the

CQ/UCQ case are thus ABoxes that extend 𝒜−
with potentially infinite tree-shaped components

that are either rooted in an individual in 𝒜−
or disconnected. They thus take the same form as

forest models which are well-known from algorithms for UCQ entailment.
3

Example 3. Consider the collection of labeled ABox-CQ examples 𝐸 = (𝐸+, 𝐸−) where 𝐸+ =
{(𝒜,∃𝑥 𝑟(𝑎, 𝑥)∧𝐴(𝑥))}, 𝐸− = {(𝒜,∃𝑥∃𝑦 𝑟(𝑎, 𝑥)∧ 𝑟(𝑥, 𝑦))}, and 𝒜 = {𝐴(𝑎)}. Any comple-
tion 𝒞 of 𝒜 contains 𝒜− = 𝒜. Hence, a homomorphism of 𝒜 into 𝒞 is found, and to satisfy the
positive example viewed as an existential rule 𝒞 must contain an 𝑟-successor 𝑏 of 𝑎 with 𝐴(𝑏) ∈ 𝒞.
There is thus another homomorphism from 𝒜 to 𝒞 that maps 𝑎 to 𝑏 and thus 𝑏 must have an
𝑟-successor 𝑐. While in principle this continues indefinitely, already at this point we have satisfied
the query from the negative example. By the characterization given in the full paper, this implies
that 𝐸 does not admit a fitting 𝒜ℒ𝒞 or 𝒜ℒ𝒞ℐ ontology.

As a consequence of this effect, the computational complexity of fitting existence turns out

to be much higher: 2ExpTime complete for both CQ and UCQ examples, no matter whether we

want to fit an 𝒜ℒ𝒞- or 𝒜ℒ𝒞ℐ-ontology. The upper bound is derived by a mosaic algorithm. The

lower bound for 𝒜ℒ𝒞ℐ is obtained via a reduction from query entailment and the lower bound

for 𝒜ℒ𝒞 is shown via a reduction from the word problem of exponentially space-bounded

alternating Turing machines.

Theorem 4. Let ℒ ∈ {𝒜ℒ𝒞,𝒜ℒ𝒞ℐ} and 𝒬 ∈ {CQ,UCQ}. Then (ℒ,𝒬)-ontology fitting is
2ExpTime-complete.

For 𝒜ℒ𝒞ℐ , the complexity thus coincides with that of query entailment, which is 2ExpTime-

complete both for CQs and UCQs [20]. For 𝒜ℒ𝒞, the complexity of the fitting problems is

higher than that of the associated entailment problems, which are both ExpTime-complete [20].

The full paper [21] summarized in this extended abstract contains full proof details.

Acknowledgements. The third author was supported by DFG project LU 1417/4-1.
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In the full paper, we actually represent completions as forest models rather than as ABoxes.
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