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Abstract
We study the problem of fitting ontologies and constraints to positive and negative examples that take the

form of a finite relational structure. As ontology and constraint languages, we consider the description

logics ℰℒ and ℰℒℐ as well as several classes of tuple-generating dependencies (TGDs): full, guarded,

frontier-guarded, frontier-one, and unrestricted TGDs as well as inclusion dependencies. We pinpoint

the exact computational complexity, design algorithms, and analyze the size of fitting ontologies and

TGDs. We also investigate the related problem of constructing a finite basis of concept inclusions / TGDs

for a given set of finite structures.
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In a fitting problem, one is given a set of positive and negative examples, each of which takes

the form of a logical structure, and the task is to produce a logical formula that is satisfied by

every positive example and refuted by every negative example. Problems of this form play a

fundamental role in several applications. A prime example is the classic paradigm of query

by example, also known as query reverse engineering [1, 2, 3]. In that case, the positive and

negative examples are database instances and the formula to be constructed is a database

query. In concept learning in description logics (DLs) [4, 5, 6], the examples are ABoxes and

the formula sought is a DL concept to be used as a building block in an ontology. We remark

that fitting problems are intimately connected to PAC learning by the fundamental theorem of

computational learning theory. A third example application is entity comparison [7, 8] where

the examples are knowledge graphs and one wants to find a formula that takes the form of a

SPARQL query.

This extended abstract is a summary of our recent work, in which we study fitting problems

that aim to support the construction of ontologies and database integrity constraints [9]. We

investigate (i) ontologies formulated in the DLs ℰℒ, ℰℒℐ , or an existential-rule language, and

(ii) database constraints taking the form of tuple-generating dependencies (TGDs). In ℰℒ and

ℰℒℐ , an ontology is a set of concept inclusions (CIs), each of which can be translated into

an equivalent TGD. Moreover, ‘existential rule’ and ‘TGD’ refer to the same thing, so from
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now on we speak of TGDs also in the context of ontologies. From our perspective there is in

fact no difference between an ontology and a set of constraints: any set of TGDs can be used

as an ontology when an open world semantics is adopted and as a set of constraints under

a closed world semantics. As constraint / ontology languages we consider ℰℒ- and ℰℒℐ-CIs,

their extensions with ⊥, unrestricted TGDs, and the following restricted classes of TGDs: full

(FullTGD), guarded (GTGD), frontier-guarded (FGTGD), and frontier-one (F1TGD), as well as

inclusion dependencies (IND).

Let us be more precise about the fitting problems that we study. In our setting the examples

are finite relational structures that we refer to as instances. An instance 𝐼 is a finite set of facts,

where a fact 𝑅(𝑎1, . . . , 𝑎𝑛) consists of an 𝑛-ary relation symbol 𝑅 and values 𝑎1, . . . , 𝑎𝑛. The

active domain of 𝐼 is the set of all values that occur in any fact of 𝐼 . A pointed instance is a pair

(𝐼, 𝑎̄), consisting of an instance 𝐼 and a finite tuple of values 𝑎̄. In the DL case, the considered

instances may only contain facts using unary and binary relation symbols. Let ℒ be one of the

TGD classes mentioned above (including ℰℒ(ℐ)-CIs). Further let (P,N) be a pair of finite sets of

instances, henceforth called a fitting instance. We say that an ℒ-ontology 𝒪 fits (P,N) if 𝑃 |= 𝒪
for all 𝑃 ∈ P and 𝑁 ̸|= 𝒪 for all 𝑁 ∈ N. For a single ℒ-TGD 𝜌, fitting (P,N) is defined in

exactly the same way. The induced decision problems of fitting ℒ-ontology existence and fitting
ℒ-TGD existence ask whether a given (P,N) admits a fitting ℒ-ontology or a fitting ℒ-TGD. We

also consider the corresponding construction problems, where the goal is to construct a fitting

ℒ-ontology or a fitting ℒ-TGD for (P,N), if one exists.

Example 1. Consider the instances 𝑃 = {𝑅(𝑎, 𝑏), 𝑅(𝑏, 𝑎)}, 𝑁 = {𝑅(𝑎, 𝑏), 𝑅(𝑏, 𝑐), 𝑅(𝑐, 𝑎)}.
Then ({𝑃}, {𝑁}) has no fitting ℰℒℐ-CI, but it has fitting GTGDs such as

𝑅(𝑥, 𝑦) → 𝑅(𝑦, 𝑥).

Now let 𝑁 ′ = 𝑁 ∪ {𝑅(𝑏, 𝑎), 𝑅(𝑐, 𝑏), 𝑅(𝑎, 𝑐)}. Then ({𝑃}, {𝑁 ′}) has no fitting GTGD. But it
has fitting FGTGDs such as

𝑅(𝑥, 𝑦) ∧𝑅(𝑦, 𝑧) ∧𝑅(𝑧, 𝑥) → 𝑅(𝑥, 𝑥).

Example 2. Having ⊥ or not makes a difference. Let 𝑃 = {𝑅(𝑎, 𝑏)}, 𝑁 = {𝑅(𝑎, 𝑎)}. Then
∃𝑅.∃𝑅.⊤ ⊑ ⊥ fits ({𝑃}, {𝑁}), but ({𝑃}, {𝑁}) has no fitting ℰℒℐ-ontology.

All negative claims in Examples 1 and 2 are a consequence of the semantic characterizations

for fitting ℒ-TGD existence established in [9]. The characterization for ℰℒ⊥ and ℰℒℐ⊥ is

explicitly stated in Theorem 1 below.

How are fitting ontologies and fitting TGDs related? The following is an immediate conse-

quence of the definition of fitting and the semantics of ontologies and TGDs.

Lemma 1. Let (P,N) be a fitting instance. Then there is an ℒ-ontology that fits (P,N) if and
only if for every 𝑁 ∈ N, there is an ℒ-TGD that fits (P, {𝑁}).

Hence, if (P,N) admits a fitting ℒ-ontology, it admits one with at most |N| TGDs.

The problem of fitting an ontology to a given set of examples turns out to be closely related

to a problem that has been studied in the area of description logic and is known as finite basis



construction [10, 11, 12]. There, one fixes an ontology language ℒ and is given as input a finite

instance 𝐼 and the task is to produce an ℒ-ontology 𝒪 such that 𝐼 |= 𝜌 if and only if 𝒪 |= 𝜌,

for all ℒ-TGDs 𝜌. We generalize this problem to a finite set H of input instances. The following

lemma connects finite basis construction with fitting ℒ-ontology existence. Informally, it states

that a finite basis of the positive examples is a canonical candidate for a fitting ℒ-ontology.

Lemma 2. Let (P,N) be a fitting instance and let 𝒪P be a finite ℒ-basis of P. Then 𝒪P fits (P,N)
if and only if (P,N) has a fitting ℒ-ontology.

If finite ℒ-bases always exists, we can thus solve the ℒ-ontology fitting problem for any

(P,N) by constructing 𝒪P and checking whether it fits the input examples. This approach in

fact often yields decidability and tight upper complexity bounds.

We first consider the DLs ℰℒ and ℰℒℐ as well as their extensions with the ⊥ concept. We

reprove the existence of finite bases for ℰℒ, already known from [13, 10], and simultaneously

prove that finite bases exist also for ℰℒℐ which to the best of our knowledge is a new result.

In contrast to the proofs from [13, 10], our proofs are direct in that they do not rely on the

machinery of formal concept analysis. The constructed bases are of double exponential size, but

can be succinctly represented in single exponential size by structure sharing. We also show that

these size bounds are tight, both for ℰℒ and for ℰℒℐ . We obtain from this an ExpTime upper

bound for the fitting existence problem for ℰℒ- and ℰℒℐ-ontologies.

In order to obtain lower complexity bounds, we provide a semantic characterization of fitting

ℰℒ- and ℰℒℐ-CI existence in terms of simulations and direct products. Let ℒ ∈ {ℰℒ, ℰℒℐ}.

For unary pointed instances (𝐼, 𝑎) and (𝐽, 𝑏) we write (𝐼, 𝑎) ⪯ℒ (𝐽, 𝑏) iff there exists an ℒ-

simulation from 𝐼 to 𝐽 that contains the pair (𝑎, 𝑏). Recall that an ℰℒ-simulation preserves

concept names and the existence of role-successors, whereas an ℰℒℐ-simulation must in addition

preserve role-predecessors, reflecting inverse roles. For a non-empty finite set H of instances

with pairwise disjoint active domains, we use

⨄︀
H to denote the instance

⋃︀
H. When the

domains of the instances in H are not pairwise disjoint, we assume that renaming is used to

achieve disjointness before forming

⨄︀
H. We next present the characterization for fitting ℰℒ⊥-

and ℰℒℐ⊥-CI existence.

Theorem 1. Let ℒ ∈ {ℰℒ, ℰℒℐ}. Let (P,N) be a fitting instance where N = {𝑁1, . . . , 𝑁𝑘} and
let 𝑃 =

⨄︀
P. Then no ℒ⊥-concept inclusion fits (P,N) if and only if for all 𝑎̄ = (𝑎1, . . . , 𝑎𝑘) ∈

∆
∏︀

N, the following condition is satisfied:

𝑆𝑎̄ = {(𝑃, 𝑏) | (
∏︁

N, 𝑎̄) ⪯ℒ (𝑃, 𝑏)} is non-empty and
∏︁

𝑆𝑎̄ ⪯ℒ (𝑁𝑖, 𝑎𝑖) for some 𝑖 ∈ [𝑘].

An extended version of Theorem 1, also covering the cases of ℰℒ and ℰℒℐ without ⊥ is

provided in [9]. The semantic characterization gives rise to an algorithm for fitting ℰℒ(ℐ)-CI

existence and opens up an alternative path to algorithms for fitting ℰℒ(ℐ)-ontology existence. It

also enables us to prove lower complexity bounds and we in fact show that all four problems are

ExpTime-complete. The proof of the theorem is constructive in the sense that it also yields an

algorithm for fitting CI and fitting ontology construction. Regarding fitting ontology existence

and construction, Lemma 1 yields a simple reduction to the CI fitting case that gives the desired

results. We also prove tight bounds on the sizes of fitting CIs and fitting ontologies, which are

identical to the size bounds on finite bases described above.



We next turn to TGDs. For guarded TGDs, we implement exactly the same program described

above for ℰℒ(ℐ), but obtain different complexities. We show that finite GTGD-bases always

exist and establish a tight single exponential bound on their size. Succinct representation does

not help to reduce the size. We give a characterization of fitting GTGD existence and fitting

GTGD-ontology existence in terms of products and homomorphisms, show that fitting GTGD

existence and fitting GTGD-ontology existence is coNExpTime-complete, and give a tight single

exponential bound on the size of fitting GTGDs and GTGD-ontologies. The coNExpTime upper

bound may be obtained either via finite bases or via the semantic characterization.

For the remaining classes of TGDs, the approach via finite bases fails: for the frontier-guarded,

frontier-one, and full case, we prove that finite bases need not exist. For inclusion dependencies,

finite bases trivially exist but approaching fitting via this route does not result in an optimal

upper complexity bound. For unrestricted TGDs, the existence of finite bases is left open.

Theorem 2. For ℒ ∈ {FGTGD, F1TGD, FullTGD}, there exist instances that have no finite ℒ-basis.

Example 3. Consider the instance 𝐼 = {𝑅(𝑎, 𝑏), 𝑅(𝑏, 𝑎)}. It has no finite FGTGD- and no finite
F1TGD-basis. For every 𝑛 ≥ 1, consider the frontier-one TGD

𝜌𝑛 =
⋀︁

𝑖∈[𝑛−1]

𝑅(𝑥𝑖, 𝑥𝑖+1) ∧𝑅(𝑥𝑛, 𝑥1) → 𝑅(𝑥1, 𝑥1).

The TGD 𝜌𝑛 expresses that if 𝑥1 lies on a cycle of length 𝑛, then 𝑥1 has a reflexive loop. We
have 𝐼 |= 𝜌𝑛 for all odd 𝑛 because (i) a cycle homomorphically maps to 𝐼 if and only if it is of
even length and (ii) 𝐼 contains no reflexive loops. Note that the rule bodies of the TGDs 𝜌𝑛 with
𝑛 odd get larger with increasing 𝑛. Intuitively, this means that also the rule bodies of any finite
FGTGD-basis of 𝐼 must be of unbounded size, which means that there is no finite FGTGD-basis.

We may, however, still approach fitting existence in a direct way or via a semantic char-

acterization. For inclusion dependencies (IND), we use direct arguments to show that fitting

IND existence and fitting IND-ontology existence is NP-complete, and that the size of fitting

IND-ontologies is polynomial. For all remaining cases, we establish semantic characterizations

in terms of products and homomorphisms and then use them to approach fitting existence.

In this way, we prove the following. Fitting ontology existence and fitting TGD existence

are coNExpTime-complete for TGDs that are frontier-guarded or frontier-one. For full TGDs,

fitting TGD existence is coNExpTime-complete and fitting ontology existence is in Σ𝑝
2 and

DP-hard. In the case of unrestricted TGDs, both problems are coNExpTime-hard and we prove a

co2NExpTime upper bound for fitting ontology existence and a co3NExpTime upper bound for

fitting TGD existence. We also show tight single exponential size bounds for fitting TGDs and

ontologies in the case of frontier-guarded and frontier-one TGDs. We do the same for fitting full

TGDs while if there is a fitting FullTGD-ontology, then there is always one of polynomial size.

For unrestricted TGD and TGD-ontology fittings, we give a single exponential lower bound and

a triple (for TGDs) and double (for ontologies) exponential upper bound on the size.
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