
Automated Planning with Ontologies under
Coherence Update Semantics (Extended Abstract)*

Stefan Borgwardt
1
, Duy Nhu

1
and Gabriele Röger

2

1Institute of Theoretical Computer Science, Technische Universität Dresden, 01062 Dresden, Germany
2Department of Mathematics and Computer Science, Universität Basel, 4001 Basel, Switzerland

Keywords
planning, coherence update semantics, compilation scheme, experiments, benchmarks

Automated planning is a core area within Artificial Intelligence that describes the development

of a system through the application of actions [3]. A planning task is defined by an initial

state, a set of actions with preconditions and effects on the current state, and a goal condition.

States can be seen as finite first-order (FO) interpretations, and all conditions are specified by

FO-formulas that are interpreted on the current state under closed-world semantics, i.e. absent

facts are assumed to be false. A (ground) action is applicable if its precondition is satisfied in

the current state w.r.t. an assignment of its variables. The objective is to select a sequence

of applicable actions to reach the goal, called a plan. To facilitate expressive reasoning in

the standard closed-world planning formalisms, logical theories under open-world semantics

can be added to describe the possible interactions between objects of a domain of interest.

Particularly, we are interested in Description Logics (DLs) and their application in reasoning

about the individual states of a system. The main challenge is to reconcile the open-world

nature of DLs and the closed-world semantics employed in classical planning.

Explicit-input Knowledge and Action Bases (eKABs) combine planning with the description

logic DL-Lite [4]. There, states (ABoxes) are interpreted using open-world semantics w.r.t.

a background ontology (TBox) specifying intensional knowledge using DL-Lite axioms. The

background ontology describes constraints on the state and entails additional facts that hold

implicitly. Such a planning problem can be compiled into the classical planning domain definition
language (PDDL) using query rewriting techniques [4].

Example 1. Consider the following axioms and facts in a blocks world:

on_block ⊑ on, ∃on_block− ⊑ Block, funct on_block,
on_table ⊑ on, ∃on_table− ⊑ Table, Block ⊑ ¬Table,
Block ≡ ∃on, ∃on_block− ⊑ Blocked,

∗

Full paper accepted at KR’25 [1, 2]

DL 2025: 38th International Workshop on Description Logics, September 3–6, 2025, Opole, Poland
$ stefan.borgwardt@tu-dresden.de (S. Borgwardt); hoang_duy.nhu@tu-dresden.de (D. Nhu);

gabriele.roeger@unibas.ch (G. Röger)

� https://lat.inf.tu-dresden.de/~stefborg/ (S. Borgwardt); https://ai.dmi.unibas.ch/people/roeger/ (G. Röger)

� 0000-0003-0924-8478 (S. Borgwardt); 0009-0003-2220-3263 (D. Nhu); 0000-0002-0092-2107 (G. Röger)

© 2025 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

mailto:stefan.borgwardt@tu-dresden.de
mailto:hoang_duy.nhu@tu-dresden.de
mailto:gabriele.roeger@unibas.ch
https://lat.inf.tu-dresden.de/~stefborg/
https://ai.dmi.unibas.ch/people/roeger/
https://orcid.org/0000-0003-0924-8478
https://orcid.org/0009-0003-2220-3263
https://orcid.org/0000-0002-0092-2107
https://creativecommons.org/licenses/by/4.0
https://ceur-ws.org
https://ceur-ws.org


∃on_block ⊑ ¬∃on_table, on_block(𝑏1, 𝑏2), on_table(𝑏3, 𝑡)

Implicitly, we know that 𝑏2 is blocked (Blocked(𝑏2)) since 𝑏1 is on 𝑏2 (on_block(𝑏1, 𝑏2)) and
every block that has another block on top is blocked (∃on_block− ⊑ Blocked). On the other
hand, we know that on_block(𝑏1, 𝑏3) cannot hold, since the on_block relation is functional
(funct on_block).

Consider now the action move(𝑥, 𝑦, 𝑧) that moves Block 𝑥 from position 𝑦 to 𝑧. Its precondition
is [on(𝑥, 𝑦)] ∧ ¬[Blocked(𝑥)] ∧ ¬[Blocked(𝑧)], where the atoms in brackets are evaluated w.r.t.
the ontology axioms (epistemic semantics). Its effects consist of

((), [Block(𝑦)], ∅, {¬on_block(𝑥, 𝑦)}),
((), [Table(𝑦)], ∅, {¬on_table(𝑥, 𝑦)}),
((), [Block(𝑧)], {on_block(𝑥, 𝑧)}, ∅),
((), [Table(𝑧)], {on_table(𝑥, 𝑧)}, ∅),

which remove on_block(𝑥, 𝑦) when 𝑦 is entailed to be a Block, add on_table(𝑥, 𝑧) if 𝑧 is a Table,
and so on. Effectively, this action removes on(𝑥, 𝑦) and adds on(𝑥, 𝑧).

For example, the action is applicable for the substitution 𝑥 ↦→ 𝑏1, 𝑦 ↦→ 𝑏2, 𝑧 ↦→ 𝑏3, since on_block
is included in on and neither Blocked(𝑏1) nor Blocked(𝑏3) are entailed. Then, the action would
remove on_block(𝑏1, 𝑏2) and insert on_block(𝑏1, 𝑏3), as Block(𝑏2) and Block(𝑏3) are entailed.

One property of this formalism is that action effects ignore implicit knowledge and only

check whether the subsequent state is consistent with the TBox.

Example 2. The effect of the ground action move(𝑏1, 𝑏2, 𝑏3) is to add on_block(𝑏1, 𝑏3) to the
state. In the eKAB formalism, this would make the state inconsistent, as argued previously.

We could remove on(𝑏1, 𝑏2) to obtain a consistent state. However, since this fact is not explicitly
present in the state (ABox), this operation would not affect the state at all, and [on(𝑏1, 𝑏2)] would
continue to hold due to on_block(𝑏1, 𝑏2).

Moreover, even if we explicitly remove on_block(𝑏1, 𝑏2), we would lose the information that 𝑏2
is a block, which means that we should add Block(𝑏2) as well.

Example 2 illustrates that actions can cause three types of implicit effects: removing a fact

requires (i) removing all stronger facts and (ii) adding previously implied facts to avoid losing

information, whereas adding a fact requires (iii) removing any conflicting facts to ensure

consistency. Addressing these challenges, the coherence update semantics was introduced for

updating an ABox in the presence of a DL-Lite TBox, where the updated ABox can be computed

with a non-recursive Datalog
¬

program [5]. However, this semantics considers only single-step

ABox updates, whereas, for planning, such implicit effects need to be computed for each action

on the way to the goal.

Here, we consider DL-Lite(ℋℱ)
𝑐𝑜𝑟𝑒 [6] (simply DL-Lite in the following) and extend eKAB plan-

ning by applying the coherence update semantics to action effects. We investigate the complexity

of the resulting formalism of ceKABs (coherent eKABs) and introduce a novel compilation into

PDDL with derived predicates by utilising the Datalog
¬

programs for eKAB [7] and coherence

semantics [5]. Moreover, we evaluate the feasibility of our approach in off-the-shelf planning

systems and the overhead incurred compared to the original eKAB semantics.



eKABs with Coherence Update Semantics. An update contains a set of insertion
and deletion operations of ABox assertions. For instance, an update requesting the dele-

tion of on_block(𝑏1, 𝑏2) and insertion of on_block(𝑏1, 𝑏3) can be represented by 𝒰 =
{del(on_block(𝑏1, 𝑏2)), ins(on_block(𝑏1, 𝑏3))}.

The coherence update semantics [5] takes an ABox𝒜 and computes an updated ABox𝒜′
that

differs from 𝒜 as little as possible (minimal change property) and is unique up to equivalence

w.r.t. 𝒯 . The effects of the semantics coincide with the implicit effects listed in (i), (ii), and (iii).

Example 3. We express the effect of the action move(𝑏1, 𝑏2, 𝑏3) in Example 1 by the above update
𝒰 . Using coherence update semantics, we do not have to distinguish the type of 𝑏2 and can simply
use del(on(𝑏1, 𝑏2)) instead.

To compute the effects of 𝒰 , a Datalog¬ programℛu
𝒯 is applied to an initial dataset containing

the assertions from𝒜 as well as the translated update requests ins_𝑝_request(𝑐⃗) (del_𝑝_request(𝑐⃗))
for each ins(𝑝(𝑐⃗)) (del(𝑝(𝑐⃗)) in 𝒰 [5]. In our example, we obtain the initial facts on_block(𝑏1, 𝑏2),
on_table(𝑏3, 𝑡), del_on_request(𝑏1, 𝑏2) and ins_on_block_request(𝑏1, 𝑏3).

First, the programℛu
𝒯 translates the requests into direct insertion and deletion instructions:

del_on(𝑥, 𝑦)← on(𝑥, 𝑦), del_on_request(𝑥, 𝑦)
ins_on_block(𝑥, 𝑦)← ¬on_block(𝑥, 𝑦), ins_on_block_request(𝑥, 𝑦)

However, the first rule has no effect since on(𝑏1, 𝑏2) is not in the ABox. Instead, we have to remove
on_block(𝑏1, 𝑏2) since on_block ⊑ on ∈ 𝒯 (cf. (i) from Example 2):

del_on_block(𝑥, 𝑦)← on_block(𝑥, 𝑦), del_on_request(𝑥, 𝑦)

Additionally, adding on_block(𝑏1, 𝑏3) also ensures that on_block(𝑏1, 𝑏2) gets deleted, since other-
wise the functionality of on_block would be violated (cf. (iii)):

del_on_block(𝑥, 𝑦)← on_block(𝑥, 𝑦), ins_on_block_request(𝑥, 𝑧), 𝑦 ̸= 𝑧

Finally, due to ∃on_block− ⊑ Block ∈ 𝒯 , the program retains the information Block(𝑏2) when
on_block(𝑏1, 𝑏2) is deleted, by first deriving ins_block_closure(𝑏2) (cf. (ii)):

ins_block_closure(𝑥)← del_on_block(𝑦, 𝑥), ¬Block(𝑥),
¬ins_block_request(𝑥), ¬del_block_request(𝑥)

This is then translated into an insertion operation if there are no conflicting requests that would
cause an inconsistency (recall that Block ⊑ ¬Table ∈ 𝒯 ):

ins_block(𝑥)← ins_block_closure(𝑥),¬ins_table_request(𝑥)

In summary, the above rules derive ins_on_block(𝑏1, 𝑏3), del_on_block(𝑏1, 𝑏2), and ins_block(𝑏2).
In addition, the programℛu

𝒯 checks whether the same tuple is requested to be added to on_block
and removed from on, as this is forbidden by the coherence semantics:

incompatible_update()← ins_on_block_request(𝑥, 𝑦), del_on_request(𝑥, 𝑦)



For planning, we lift the coherence update semantics to apply it to all actions in a planning

problem. Our ceKAB semantics retains the favourable behaviours of the epistemic eKAB

semantics for action conditions and of the coherence update semantics for single-step updates of

DL-Lite ABoxes. In particular, it is possible to rewrite all operations into Datalog
¬

, and therefore

into classical planning with derived predicates, in polynomial time.

APolynomial Compilation Scheme for ceKABs. A compilation scheme translates a ceKAB

planning task to a PDDL task s.t. a plan for the ceKAB exists iff a plan for the PDDL exists.

Additionally, if the translation is polynomially bounded in the size of the eKAB task, then the

compilation scheme is polynomial. We develop a polynomial compilation scheme by extending

the known eKAB-to-PDDL compilation from [7].

Deciding Plan Existence for ceKABs. The coherence plan existence problem decides whether

a plan exists for a DL-Lite ceKAB task. We study the complexity of the problem by means of

a result by Erol et al. [8] on the plan existence problem for classical planning (PDDL without

derived predicates), which the authors showed to be ExpSpace-complete. By our polynomial

compilation scheme and a reduction in the other direction (PDDL-to-ceKAB), we can show that

the same holds for the coherence plan existence problem.

Experimental Evaluation. We conduct a range of experiments to evaluate the feasibility of

our compilation and its performance compared to the pure eKAB semantics [7]. Our benchmark

collection consists of 159 instances from the classical planning Blocks benchmark paired with

an external ontology, and the existing eKAB benchmarks for DL-Lite from [7]. We modify some

of the benchmarks s.t. all benchmarks have plans under both eKAB and ceKAB semantics.

We use Downward Lab [9] to conduct experiments with the Fast Downward planning sys-

tem [10]. Our main focus is satisficing planning using greedy best-first search [11] with the FF

heuristic [12], as well as the more aggressive variant ̃︀FF provided by Fast Downward, which

provides less heuristic guidance, but is faster to compute. Considering the other extreme, we

also experiment with the blind heuristic that simply assigns 1 to non-goal states and 0 to goal

states.

On most of the benchmarks, we observe that ̃︀FF significantly outperforms FF in terms of

memory and CPU time due to the combinatorial explosion in the computation of the FF heuristic.

In many benchmark instances, heuristic search does not perform better than blind search, which

indicates a weak support for derived predicates in the heuristics in general. Compared to the

original eKAB-to-PDDL compilation [7], supporting coherence update semantics imposes extra

strain on the planning system.

In future work, we will try to extend ceKABs to support more expressive ontologies, and

improve the planning performance by simplifying the Datalog
¬

programs used in the compi-

lations or by developing heuristics that better support the specific structure of the resulting

derived predicates.



Acknowledgments

This work was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research

Foundation) in grant 540204715 and by the Swiss National Science Foundation (SNSF) as part of

the project “Practical Planning with Ontologies” (PPO).

References

[1] S. Borgwardt, D. Nhu, G. Röger, Automated planning with ontologies under coherence

update semantics, in: Proceedings of the 22nd International Conference on Principles of

Knowledge Representation and Reasoning, KR 2025, November 11-17, 2025. To appear.

[2] S. Borgwardt, D. Nhu, G. Röger, Automated planning with ontologies under coherence

update semantics (extended version), 2025. arXiv:2507.15120.

[3] M. Ghallab, D. S. Nau, P. Traverso, Automated planning - theory and practice, Elsevier,

2004.

[4] D. Calvanese, M. Montali, F. Patrizi, M. Stawowy, Plan synthesis for knowledge and

action bases, in: S. Kambhampati (Ed.), Proceedings of the Twenty-Fifth International

Joint Conference on Artificial Intelligence, IJCAI 2016, New York, NY, USA, 9-15 July 2016,

IJCAI/AAAI Press, 2016, pp. 1022–1029. URL: http://www.ijcai.org/Abstract/16/149.

[5] G. De Giacomo, X. Oriol, R. Rosati, D. F. Savo, Instance-level update in DL-Lite ontologies

through first-order rewriting, J. Artif. Intell. Res. 70 (2021) 1335–1371. doi:10.1613/JAIR.
1.12414.

[6] A. Artale, D. Calvanese, R. Kontchakov, M. Zakharyaschev, The DL-Lite family and

relations, J. Artif. Intell. Res. 36 (2009) 1–69. doi:10.1613/JAIR.2820.

[7] S. Borgwardt, J. Hoffmann, A. Kovtunova, M. Krötzsch, B. Nebel, M. Steinmetz, Expressivity

of planning with horn description logic ontologies, in: Thirty-Sixth AAAI Conference on

Artificial Intelligence, AAAI 2022, Thirty-Fourth Conference on Innovative Applications

of Artificial Intelligence, IAAI 2022, The Twelveth Symposium on Educational Advances

in Artificial Intelligence, EAAI 2022 Virtual Event, February 22 - March 1, 2022, AAAI

Press, 2022, pp. 5503–5511. URL: https://doi.org/10.1609/aaai.v36i5.20489. doi:10.1609/
AAAI.V36I5.20489.

[8] K. Erol, D. S. Nau, V. S. Subrahmanian, Complexity, decidability and undecidability

results for domain-independent planning, Artif. Intell. 76 (1995) 75–88. doi:10.1016/
0004-3702(94)00080-K.

[9] J. Seipp, F. Pommerening, S. Sievers, M. Helmert, Downward Lab, https://doi.org/10.5281/

zenodo.790461, 2017.

[10] M. Helmert, The fast downward planning system, J. Artif. Intell. Res. 26 (2006) 191–246.

doi:10.1613/JAIR.1705.

[11] J. E. Doran, D. Michie, Experiments with the graph traverser program, Proceedings of the

Royal Society A 294 (1966) 235–259.

[12] J. Hoffmann, B. Nebel, The FF planning system: Fast plan generation through heuristic

search, J. Artif. Intell. Res. 14 (2001) 253–302. doi:10.1613/JAIR.855.

http://arxiv.org/abs/2507.15120
http://www.ijcai.org/Abstract/16/149
http://dx.doi.org/10.1613/JAIR.1.12414
http://dx.doi.org/10.1613/JAIR.1.12414
http://dx.doi.org/10.1613/JAIR.2820
https://doi.org/10.1609/aaai.v36i5.20489
http://dx.doi.org/10.1609/AAAI.V36I5.20489
http://dx.doi.org/10.1609/AAAI.V36I5.20489
http://dx.doi.org/10.1016/0004-3702(94)00080-K
http://dx.doi.org/10.1016/0004-3702(94)00080-K
https://doi.org/10.5281/zenodo.790461
https://doi.org/10.5281/zenodo.790461
http://dx.doi.org/10.1613/JAIR.1705
http://dx.doi.org/10.1613/JAIR.855

