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Abstract
While the computation of Craig interpolants for description logics (DLs) with the Craig Interpolation

Property (CIP) is well understood, very little is known about the computation and size of interpolants for

DLs without CIP or if one aims at interpolating concepts in a weaker DL than the DL of the input ontology

and concepts. In this paper, we provide the first elementary algorithms computing (i) 𝒜ℒ𝒞 interpolants

between 𝒜ℒ𝒞-concepts under 𝒜ℒ𝒞ℋ-ontologies and (ii) 𝒜ℒ𝒞 interpolants between 𝒜ℒ𝒞𝒬-concepts

under 𝒜ℒ𝒞𝒬-ontologies. The algorithms are based on recent decision procedures for interpolant

existence. We also observe that, in contrast, uniform depth restricted interpolants might be of non-

elementary size.
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1. Introduction

Interpolants between description logic (DL) concepts have found many applications. For instance,

they can be used as explicit concept definitions or referring expressions, as explanations for

concept inclusions, as rewritings of queries, and as separating concepts in the context of concept

learning [1, 2, 3, 4, 5]. The computation of interpolants has been investigated extensively, both

by the DL community [6, 7, 8, 9] but also in modal logic and related fragments of FO [10, 11, 12].

We quickly remind the reader how this is done: A Craig interpolant between 𝐶 and 𝐷 is a

concept 𝐸 in the shared signature of 𝐶 and 𝐷 such that |= 𝐶 ⊑ 𝐸 and |= 𝐸 ⊑ 𝐷 (for simplicity

we drop the ontology). A DL has the Craig Interpolation Property (CIP), if the existence of such

an interpolant follows from |= 𝐶 ⊑ 𝐷. DLs such as 𝒜ℒ𝒞, 𝒜ℒ𝒞𝒬, and 𝒜ℒ𝒞ℐ have the CIP [6].

Then, an interpolant 𝐸 can typically be extracted from a proof of |= 𝐶 ⊑ 𝐷 (or, equivalently, of

non-satisfiability of 𝐶 ⊓ ¬𝐷) in standard calculi in the field such as tableau, the chase, sequent

calculi, or type elimination [6, 7, 8, 11, 13].

The situation is very different for DLs that do not enjoy the CIP or if one is interested in

interpolating concepts in a weaker DL than the concepts used in the inclusion. In this case,
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the existence of an interpolating concept does not follow from the validity of the inclusion

and extracting interpolating concepts from proofs becomes much harder. In fact, very little is

known about how this could be done and research has so far focused on deciding the existence

of interpolants rather than constructing them [14, 15, 16]. It is worth noting, however, that for

extensions of ℰℒ, the chase can be used to compute interpolants even without CIP [7].

It is well known that Craig interpolants of 𝒜ℒ𝒞 concept inclusions under 𝒜ℒ𝒞ℋ ontologies

do not necessarily exist [17, 6] and that not every 𝒜ℒ𝒞𝒬 concept inclusion has an 𝒜ℒ𝒞
interpolant (take |= 𝐶 ⊑ 𝐶 for any 𝒜ℒ𝒞𝒬 concept 𝐶 not equivalent to an 𝒜ℒ𝒞 concept).

Existence of 𝒜ℒ𝒞 interpolants in these settings is, however, decidable [15, 18]. To explain the

proof, assume that |= 𝐶 ⊑ 𝐷 and let Σ be any signature (again we drop the ontology for

simplicity). It is known that an interpolating 𝒜ℒ𝒞(Σ) concept exists if no Σ-bisimilar nodes

satisfying 𝐶 and ¬𝐷 exist. Hence it suffices to decide whether a pair of concepts is satisfiable in

Σ-bisimilar nodes. It turns out that to decide this problem it is crucial to decide the more general

problem whether a set of concepts (and not just a pair) is satisfiable in mutually Σ-bisimilar

nodes. By completing concepts to types containing them, it suffices to decide the latter problem

for sets of types, often called mosaics. In fact, the decision algorithms in [15, 18] use mosaics

and generalize the well-known type elimination procedures deciding satisfiability of concepts to

mosaic elimination procedures deciding Σ-bisimilar satisfiability.

Mosaic elimination procedures decide the existence of interpolants, but they do not construct

any interpolants. The aim of this paper is to give the first elementary algorithms constructing

𝒜ℒ𝒞 interpolants whenever they exist under ontologies in 𝒜ℒ𝒞ℋ and under ontologies and

concept inclusions in 𝒜ℒ𝒞𝒬. Our algorithms are not restricted to computing Craig interpolants,

but work for arbitrary signatures. The idea of the algorithms is to run the mosaic elimination

procedures discussed above and construct, in addition and inductively, for each eliminated

mosaic entailed 𝒜ℒ𝒞(Σ) concepts that witness non Σ-bisimilar satisfiability of its types. The

witness concepts we propose are not aggregated at each step, but are polyadic in the sense that

we define, for any set 𝑇 of concepts (types in the case of mosaics) which are not satisfiable in

Σ-bisimilar nodes, for each 𝐶 ∈ 𝑇 an 𝒜ℒ𝒞(Σ) concept Sep(𝐶) such that the following holds:

• |= 𝐶 ⊑ Sep(𝐶) for all 𝐶 ∈ 𝑇 ;

• |= ⊓
𝐶∈𝑇

Sep(𝐶) ⊑ ⊥.

The concept Sep(𝐶) constructed for 𝑇 = {𝐶,¬𝐷} is then the desired interpolant. We note

that an earlier attempt to construct interpolants while running a mosaic elimination procedure

without using polyadic separators does not work as stated [15]. Hence one main contribution of

this paper is to correct that proof. Our second main contribution is to show that our approach

also works in the case of 𝒜ℒ𝒞𝒬 ontologies.

2. Preliminaries

We first introduce the syntax and semantics of the basic description logics 𝒜ℒ𝒞, 𝒜ℒ𝒞ℋ, and

𝒜ℒ𝒞𝒬 and introduce some model theory. We refer the reader to [19] for a comprehensive

introduction to description logics. Let NC, and NR be mutually disjoint and countably infinite



sets of concept, and role names. An 𝒜ℒ𝒞𝒬 concept is defined according to the syntax rule

𝐶,𝐷 ::= ⊤ | 𝐴 | ¬𝐶 | 𝐶 ⊓𝐷 | (≥ 𝑛 𝑟.𝐶)

where 𝐴 ranges over concept names, 𝑟 over role names, and 𝑛 ≥ 0. We use the standard

abbreviations ∃𝑟.𝐶 for (≥ 1 𝑟.𝐶), ∀𝑟.𝐶 for ¬∃𝑟.¬𝐶 , 𝐶 ⊔𝐷 for ¬(¬𝐶 ⊓ ¬𝐷), and 𝐶 → 𝐷 for

¬𝐶 ⊔𝐷. An 𝒜ℒ𝒞 concept is an 𝒜ℒ𝒞𝒬 concept in which for every subformula (≥ 1 𝑟.𝐶), 𝑛 is

actually 1. An 𝒜ℒ𝒞𝒬 concept inclusion (𝒜ℒ𝒞𝒬 CI) takes the form 𝐶 ⊑ 𝐷 for 𝒜ℒ𝒞𝒬 concepts

𝐶 and 𝐷. 𝒜ℒ𝒞 concept inclusions are defined accordingly. An 𝒜ℒ𝒞𝒬 ontology is a finite set of

𝒜ℒ𝒞𝒬 CIs. An 𝒜ℒ𝒞ℋ ontology is a finite set of 𝒜ℒ𝒞 concept inclusions and role inclusions
(RIs) 𝑟 ⊑ 𝑠 where 𝑟, 𝑠 are role names from NR. The size of a (finite) syntactic object 𝑋 , denoted

‖𝑋‖, is the number of symbols needed to represent it as a word, and the role depth of a concept

is the maximal nesting depth of concept constructors (≥ 𝑛 𝑟.𝐶).
As usual, the semantics is defined in terms of interpretations ℐ = (∆ℐ , ·ℐ), where ∆ℐ

is a

non-empty set, called domain of ℐ , and ·ℐ is a function mapping every 𝐴 ∈ NC to a subset

of 𝐴ℐ ⊆ ∆ℐ
and every 𝑟 ∈ NR to a subset of 𝑟ℐ ⊆ ∆ℐ ×∆ℐ

. The extension 𝐶ℐ of a concept
𝐶 in ℐ is defined as usual. An interpretation ℐ satisfies a CI 𝐶 ⊑ 𝐷 if 𝐶ℐ ⊆ 𝐷ℐ

and an RI

𝑟 ⊑ 𝑠 if 𝑟ℐ ⊆ 𝑠ℐ . We say that ℐ is a model of an ontology 𝒪 if it satisfies all inclusions in it. A

concept 𝐶 is satisfiable under ontology 𝒪 if there is a model ℐ of 𝒪 with 𝐶ℐ ̸= ∅. Moreover,

𝐶 is subsumed by another concept 𝐷 under 𝒪 if 𝐶ℐ ⊆ 𝐷ℐ
in every model ℐ of 𝒪. We write

𝒪 |= 𝐶 ⊑ 𝐷 in this case.

We next introduce the studied notions and associated problems. A signature is a set Σ of

concept and role names. An 𝒜ℒ𝒞(Σ) concept is an 𝒜ℒ𝒞 concept that uses only concept and role

names from Σ. Let ℒ,ℒ′
be DLs, and let us fix an ℒ ontology 𝒪, ℒ concepts 𝐶,𝐷, and a signature

Σ. Then, an ℒ′(Σ) interpolant for 𝒪 |= 𝐶 ⊑ 𝐷 is an ℒ′(Σ) concept 𝐸 with 𝒪 |= 𝐶 ⊑ 𝐸 and

𝒪 |= 𝐸 ⊑ 𝐷. The associated decision problem of ℒ′(Σ) interpolant existence over ℒ ontologies

and concepts has been recently studied and shown decidable [15, 18]. The decision procedures

are based on elegant model-theoretic characterizations of interpolant existence in terms of

bisimulations, which we introduce next. A relation 𝑍 ⊆ ∆ℐ ×∆𝒥
is a Σ-bisimulation between

interpretations ℐ and 𝒥 if the following conditions are satisfied for all (𝑑, 𝑒) ∈ 𝑍 :

Atom for all concept names 𝐴 ∈ Σ: 𝑑 ∈ 𝐴ℐ
iff 𝑒 ∈ 𝐴𝒥

,

Back for all role names 𝑟 ∈ Σ and all (𝑑, 𝑑′) ∈ 𝑟ℐ , there is (𝑒, 𝑒′) ∈ 𝑟𝒥 such that (𝑑′, 𝑒′) ∈ 𝑍 ,

Forth for all role names 𝑟 ∈ Σ and all (𝑒, 𝑒′) ∈ 𝑟𝒥 , there is (𝑑, 𝑑′) ∈ 𝑟ℐ such that (𝑑′, 𝑒′) ∈ 𝑍 .

A pointed interpretation is a pair ℐ, 𝑑with ℐ an interpretation and 𝑑 ∈ ∆ℐ
. We write ℐ, 𝑑 ∼𝒜ℒ𝒞,Σ

𝒥 , 𝑒 and call ℐ, 𝑑 and 𝒥 , 𝑒 Σ-bisimilar if there exists an Σ-bisimulation 𝑍 such that (𝑑, 𝑒) ∈ 𝑍 .

We say that 𝒜ℒ𝒞𝒬 concepts 𝐶1, 𝐶2 are jointly ∼𝒜ℒ𝒞,Σ-consistent under 𝒪 if there are models

ℐ1, ℐ2 of 𝒪 and elements 𝑑𝑖 ∈ 𝐶ℐ𝑖
𝑖 for 𝑖 = 1, 2 with ℐ1, 𝑑1 ∼𝒜ℒ𝒞,Σ ℐ2, 𝑑2. We have the

following characterization:

Lemma 1. Let ℒ ∈ {𝒜ℒ𝒞ℋ,𝒜ℒ𝒞𝒬}, 𝒪 be an ℒ ontology, 𝐶,𝐷 be ℒ-concepts, and Σ be a
signature. Then the following are equivalent:

1. there is an 𝒜ℒ𝒞(Σ) interpolant for 𝒪 |= 𝐶 ⊑ 𝐷;



2. 𝐶,¬𝐷 are not jointly ∼𝒜ℒ𝒞,Σ-consistent under 𝒪.

The proof of Lemma 1 is based on the fact that Σ-bisimulations capture the expressive power

of 𝒜ℒ𝒞(Σ) concepts, and crucially relies on the use of compactness. In particular, it is not

constructive in the sense that in the proof of implication 2 ⇒ 1, no interpolant is constructed.

We study here the associated computation problems, that is, compute the interpolants if they

exist. A notion dual to the notion of an interpolant is that of a separator. Given concepts 𝐶,𝐷,𝐸
we call 𝐸 a separator for 𝐶,𝐷 if 𝐶 ⊑ 𝐸 and 𝐸 ⊑ ¬𝐷. Clearly, 𝐸 is a separator for 𝐶,𝐷 iff it is

an interpolant for 𝐶,¬𝐷. Thus, the problems of finding interpolants and separators for a given

pair of concepts are algorithmically equivalent. We will switch between these two perspectives

depending on which one is more convenient in a given context.

3. Role Inclusions

In this section, we are concerned with computing 𝒜ℒ𝒞 interpolants of concept inclusions under

𝒜ℒ𝒞ℋ ontologies. We start with an example that illustrates the failure of the computation

algorithm given in [15].

Example 2. Fix 𝑘 ≥ 1, 𝒪 = {𝑟 ⊑ 𝑠𝑖, 𝑠𝑖 ⊑ 𝑠′𝑖 | 𝑖 ≤ 𝑘}, Σ = {𝑠′𝑖, 𝐴𝑖 | 𝑖 ≤ 𝑘}, and

𝐶 = ∃𝑟.𝐵 ⊓ ∀𝑟.(𝐵 → ⊔
𝑖≤𝑘

𝐴𝑖) and 𝐷 = ⊓
𝑖≤𝑘

∀𝑠𝑖.¬𝐴𝑖.

We show that 𝐶,𝐷 are not jointly ∼𝒜ℒ𝒞,Σ-consistent under 𝒪. Indeed, if 𝐶,𝐷 are jointly ∼𝒜ℒ𝒞,Σ-
consistent, then all concepts in 𝑆 = {𝐵⊓(𝐵 → ⊔

𝑖≤𝑘
𝐴𝑖)}∪{¬𝐴𝑖 | 𝑖 ≤ 𝑘} are satisfied in mutually

Σ-bisimilar nodes, which is clearly not the case. By Lemma 1, there is an 𝒜ℒ𝒞(Σ) interpolant for
𝒪 |= 𝐶 ⊑ ¬𝐷. For instance, 𝐸 = ⊔

𝑖≤𝑘
∃𝑠′𝑖.𝐴𝑖 is an 𝒜ℒ𝒞(Σ) interpolant. The algorithm from [15],

however, computes a concept of shape ∃𝑠′𝑖.𝐸 for a single 𝑖 ≤ 𝑘 and one can easily see that a concept
of this shape cannot serve as an interpolant. The mistake in the algorithm is a confusion in the
quantifier order in the assumptions of the interpolant construction.

We first show how a natural idea for computing interpolants, which works in several other

settings, fails to compute elementary sized interpolants in the presence of role inclusions. Next

we provide an algorithm which does compute elementary interpolants.

A natural idea to compute interpolants could be to show first that, if there is an 𝒜ℒ𝒞(Σ)
interpolant for 𝒪 |= 𝐶0 ⊑ 𝐷0, then there is one of small role depth 𝑛, and then use the

strongest 𝒜ℒ𝒞 consequence of 𝐶0 of this role depth 𝑛. Let 𝑛 ≥ 0. A (Σ, 𝑛)-uniform interpolant
of 𝐶0 under 𝒪 is an 𝒜ℒ𝒞(Σ) concept 𝑈 such that 𝒪 |= 𝐶0 ⊑ 𝑈 and 𝒪 |= 𝑈 ⊑ 𝐸 for every

𝒜ℒ𝒞(Σ) concept 𝐸 of role depth at most 𝑛 with 𝒪 |= 𝐶0 ⊑ 𝐸. A (Σ, 𝑛)-uniform interpolant

for 𝐶0 under 𝒪 always exists, and can be used as an interpolant for 𝒪 |= 𝐶0 ⊑ 𝐷 whenever

an 𝒜ℒ𝒞(Σ) interpolant for 𝒪 |= 𝐶0 ⊑ 𝐷 of role depth 𝑛 exists. This idea has been used to

compute elementary sized modal logic interpolants of 𝜇-calculus formulae [20] and it follows

from its proof that it applies to computing interpolants under 𝒜ℒ𝒞 ontologies. We actually

conjecture that it works for the majority of DLs enjoying the CIP, but we leave an elaboration for

future work. Unfortunately, contrary to these settings, in our case (Σ, 𝑛)-uniform interpolants



need not be elementary in 𝑛, and consequently do not lead to elementary sized interpolants.

In what follows we denote by Tower the iterated exponential function, that is, Tower(0) = 1
and Tower(𝑛+ 1) = 2Tower(𝑛)

.

Theorem 3. There is an 𝒜ℒ𝒞ℋ ontology 𝒪, an 𝒜ℒ𝒞 concept 𝐶0, and signature Σ such that there
is no (Σ, 𝑛)-uniform interpolant of 𝐶0 under 𝒪 smaller than Tower(𝑛− 2).

Proof. Consider the 𝒜ℒ𝒞ℋ ontology 𝒪 = {𝑟 ⊑ 𝑠, 𝑟 ⊑ 𝑠′}, the concept 𝐶0 = ∃𝑟.⊤ and

Σ = {𝑠, 𝑠′}. We claim that no concept 𝑈 of size smaller than Tower(𝑛− 2) is a (Σ, 𝑛)-uniform

interpolant for 𝐶0 under 𝒪. Assume towards contradiction that there is such an 𝑈 . Observe

that for every 𝐶 ∈ 𝒜ℒ𝒞(Σ) of depth 𝑛 − 1, ∀𝑠.𝐶 → ∃𝑠′.𝐶 is an 𝒜ℒ𝒞(Σ) concept of depth

𝑛 and 𝒪 |= 𝐶0 ⊑ (∀𝑠.𝐶 → ∃𝑠′.𝐶). Hence 𝒪 |= 𝑈 ⊑ (∀𝑠.𝐶 → ∃𝑠′.𝐶). Consider all trees of

depth 𝑛− 1, choose one for every equivalence class of Σ-bisimulation and denote the set of

all these chosen trees by 𝒯 . We have Tower(𝑛− 1) ≤ |𝒯 | and ‖𝑈‖ < Tower(𝑛− 2). Thus,

by the pigeonhole principle there are two different ℐ1, ℐ2 ∈ 𝒯 whose respective roots 𝑑1, 𝑑2
satisfy exactly the same sub-concepts of 𝑈 . Every two trees in 𝒯 are distinguished by some

𝐷 ∈ 𝒜ℒ𝒞(Σ) of depth 𝑛 − 1, so let us pick 𝐷 such that 𝑑1 ∈ 𝐷ℐ1
but 𝑑2 /∈ 𝐷ℐ2

. We claim

that 𝒪 ̸|= 𝑈 ⊑ ∀𝑠.𝐷 → ∃𝑠′.𝐷, which contradicts that 𝑈 is an (Σ, 𝑛)-uniform interpolant.

This is witnessed by an interpretation 𝒥 constructed as follows. First take the disjoint union

of ℐ1, ℐ2. Then take two fresh points 𝑒1, 𝑒2, and add edges 𝑒1
𝑟→ 𝑑1, 𝑒1

𝑠→ 𝑑1, 𝑒1
𝑠′→ 𝑑1 and

𝑒2
𝑠→ 𝑑1, 𝑒2

𝑠′→ 𝑑2. Since 𝒪 |= 𝐶0 ⊑ 𝑈 and 𝐶0 is true at 𝑒1 we have 𝑒1 ∈ 𝑈𝒥
. This implies

𝑒2 ∈ 𝑈𝒥
because 𝑑 and 𝑑′ satisfy the same subconcepts of 𝑈 . But ∀𝑠.𝐷 → ∃𝑠′.𝐷 is false at 𝑒2,

a contradiction.

On the positive side, we show the following second main result.

Theorem 4. Let 𝒪 be an 𝒜ℒ𝒞ℋ ontology, 𝐶0, 𝐷0 𝒜ℒ𝒞 concepts, and Σ be a signature. Then, if
there is an 𝒜ℒ𝒞(Σ) interpolant for 𝒪 |= 𝐶0 ⊑ 𝐷0, we can construct the DAG representation of
such an interpolant in time double exponential in ‖𝒪‖+ ‖𝐶0‖+ ‖𝐷0‖.

The proof is by extending a known mosaic elimination procedure for deciding joint ∼𝒜ℒ𝒞,Σ-

consistency for input ontology and concepts formulated in 𝒜ℒ𝒞ℋ [15]. We present a slight

simplification of the original procedure, as we require it only for a restricted setting.

Let us fix an 𝒜ℒ𝒞ℋ ontology 𝒪, 𝒜ℒ𝒞 concepts 𝐶0, 𝐷0, and a signature Σ. We denote with

sub(𝒪, 𝐶0, 𝐷0) the set of subconcepts that occur in 𝒪, 𝐶0, 𝐷0, closed under single negation.

A type for 𝒪 is any subset of sub(𝒪, 𝐶0, 𝐷0) realizable in a model of 𝒪, that is, any set 𝑡 ⊆
sub(𝒪, 𝐶0, 𝐷0) such that there is a model ℐ of 𝒪 and element 𝑑 ∈ ∆ℐ

with 𝑡 = tpℐ(𝑑) where:

tpℐ(𝑑) = {𝐸 ∈ sub(𝒪, 𝐶0, 𝐷0) | 𝑑 ∈ 𝐸ℐ}.

We often treat a type 𝑡 as the conjunction of all concepts it contains, which allows us to write,

for instance, 𝒪 |= 𝑡 ⊑ 𝐷. A mosaic for 𝒪 is a set 𝑇 of types for 𝒪. We say that a type 𝑡 is a

completion of a concept 𝐶 ∈ sub(𝒪, 𝐶0, 𝐷0) if 𝐶 ∈ 𝑡, and a mosaic 𝑇 is a completion of a set

𝒞 ⊆ sub(𝒪, 𝐶0, 𝐷0) of concepts if 𝑇 contains a completion of every 𝐶 ∈ 𝒞.



Intuitively, a mosaic 𝑇 describes a collection of elements in an interpretation ℐ which realize

precisely the types in 𝑇 and are mutually Σ-bisimilar. Naturally, not every set of types can

be realized in this way, and we use a mosaic elimination procedure to determine which can.

We write 𝑡 ⇝𝑟 𝑡′ if an element of type 𝑡′ is a viable 𝑟-successor of an element of type 𝑡, that

is, {𝐶 | ∀𝑟.𝐶 ∈ 𝑡} ⊆ 𝑡′. We will denote {𝐶 | ∀𝑟.𝐶 ∈ 𝑡} = 𝑡/𝑟 . We write 𝑇 ⇝𝑟 𝑇
′
if for every

𝑡 ∈ 𝑇 , there is 𝑡′ ∈ 𝑇 ′
with 𝑡 ⇝𝑟 𝑡′. Let ℳ be a set of mosaics. A mosaic 𝑇 ∈ ℳ is bad if it

violates one of the following conditions:

(Atomic Consistency) for every 𝑡, 𝑡′ ∈ 𝑇 and 𝐴 ∈ Σ, 𝐴 ∈ 𝑡 iff 𝐴 ∈ 𝑡′;

(Existential Saturation) for every 𝑡 ∈ 𝑇 and ∃𝑟.𝐶 ∈ 𝑡, there is 𝑇 ′ ∈ ℳ such that (a) 𝐶 ∈ 𝑡′

for some 𝑡′ ∈ 𝑇 ′
with 𝑡⇝𝑟 𝑡

′
and (b) if 𝒪 |= 𝑟 ⊑ 𝑠 for some 𝑠 ∈ Σ, then 𝑇 ⇝𝑠 𝑇

′
.

Along the lines of the proof of Lemma 6.5 in [15] one can show Lemma 5 below, see the appendix

for a proof sketch. The original Lemma 6.5 works with pairs of mosaics which is necessary for

DLs that are not preserved under disjoint unions such as 𝒜ℒ𝒞𝒪.

Lemma 5. 𝐶0 and 𝐷0 are jointly ∼𝒜ℒ𝒞,Σ-consistent under 𝒪 iff there is a set ℳ* of mosaics
that does not contain a bad mosaic and such that there is 𝑇 ∈ ℳ* and 𝑡1, 𝑡2 ∈ 𝑇 with 𝐶0 ∈ 𝑡1
and 𝐷0 ∈ 𝑡2.

It is a consequence of Lemma 5 that joint ∼𝒜ℒ𝒞,Σ-consistency under 𝒜ℒ𝒞ℋ ontologies can

be decided in double exponential time. Indeed, an ℳ*
as in Lemma 5 can be found (if it exists)

by exhaustively eliminating bad mosaics from the set of all mosaics. Since the set of all mosaics

is of double exponential size, and each round of the elimination procedure can be performed in

time polynomial in the size of the current set of mosaics, the upper bound follows. By the link

to interpolant existence provided in Lemma 1, also 𝒜ℒ𝒞(Σ) interpolant existence is decidable

in double exponential time.

Our aim is to extend the described mosaic elimination procedure by computing, for each type

in an eliminated mosaic, its “contribution” to the elimination. To formalize this we introduce

a polyadic notion of a separator reflecting the fact that a mosaic may contain more than two

types. Assume a set 𝒞 of concepts. An 𝒜ℒ𝒞(Σ) separator for 𝒞 is a function Sep from 𝒞 to

𝒜ℒ𝒞(Σ)-concepts such that:

• 𝒪 |= 𝐶 ⊑ Sep(𝐶) for every 𝐶 ∈ 𝒞;

• 𝒪 |= ⊓
𝐶∈𝒞

Sep(𝐶) ⊑ ⊥.

We call 𝒞 𝒜ℒ𝒞(Σ)-separable if there is an 𝒜ℒ𝒞(Σ) separator for 𝒞. We will use the following

lemma which connects separation of concepts with separation of their completions.

Lemma 6. Assume a set 𝒞 ⊆ sub(𝒪, 𝐶0, 𝐷0) of concepts. The following are equivalent:

1. the set 𝒞 is 𝒜ℒ𝒞(Σ)-separable;
2. every completion 𝑇 of 𝒞 is 𝒜ℒ𝒞(Σ)-separable.

Proof. The implication (1) =⇒ (2) is straightforward because a separator for 𝒞 is a separator

for every completion 𝑇 of 𝒞.



For the other implication (2) =⇒ (1) assume that for every completion of 𝒞 we have a

separator. Let cp(𝒞) denote the set of all functions from 𝒞 to types which map every 𝐶 ∈ 𝒞 to

one of its completions. The image 𝑓 [𝒞] of every such function 𝑓 ∈ cp(𝒞) is a completion of 𝒞,

and thus, by assumption, is separated by some Sep𝑓 .

We define a separator Sep for 𝒞 by setting, for every 𝐶 ∈ 𝒞:

Sep(𝐶) = ⊔
𝑡 completion

of 𝐶

⊓
𝑓∈cp(𝒞)
𝑓(𝐶)=𝑡

Sep𝑓 (𝐶) (*)

To prove 𝒪 |= 𝐶 ⊑ Sep(𝐶) assume ℐ |= 𝒪 and 𝑑 ∈ 𝐶ℐ
. Let 𝑡 be the type tpℐ(𝑑) of

𝑑. Clearly, 𝑡 is a completion of 𝐶 . By assumption, for every 𝑓 ∈ cp(𝒞) and 𝐶 ∈ 𝒞 we

have 𝒪 |= 𝑓(𝐶) ⊑ Sep𝑓 (𝐶). Hence, for every 𝑓 ∈ cp(𝒞) such that 𝑓(𝐶) = 𝑡 we get

𝒪 |= 𝑡 ⊑ Sep𝑓 (𝐶). It follows that 𝑑 ∈ (Sep(𝐶))ℐ .

It remains to show that 𝒪 |= ⊓
𝐶∈𝒞

Sep(𝐶) ⊑ ⊥. Assume towards contradiction an interpreta-

tion ℐ |= 𝒪 with 𝑑 ∈ ( ⊓
𝐶∈𝒞

Sep(𝐶))ℐ . By definition of Sep, for every 𝐶 there is a completion

𝑡𝐶 such that 𝑑 satisfies:

⊓
𝑓∈cp(𝒞)
𝑓(𝐶)=𝑡𝐶

Sep𝑓 (𝐶).

Consider a function 𝑓 ∈ cp(𝒞) defined as 𝑓(𝐶) = 𝑡𝐶 for every 𝐶 . It follows that 𝑑 satisfies

Sep𝑓 (𝐶) for every 𝐶 . This contradicts the assumption that {Sep𝑓 (𝐶) | 𝐶 ∈ 𝒞} is a separator

for the image of 𝑓 and as such is inconsistent.

We inductively define separators for each eliminated mosaic. Recall that there are two ways a

mosaic 𝑇 can be eliminated: the base case when 𝑇 violates atomic consistency, and the inductive

case when 𝑇 violates existential saturation. We look at these cases in turn.

Inductive Base. If 𝑇 violates atomic consistency then there is a concept name 𝐴 ∈ Σ and

types 𝑡, 𝑡′ ∈ 𝑇 with 𝐴 ∈ 𝑡 and ¬𝐴 ∈ 𝑡′. Let Sep(𝑡) be 𝐴 if 𝐴 ∈ 𝑡 and ¬𝐴 otherwise. It follows

that 𝒪 |= 𝑡 ⊑ Sep(𝑡) for all 𝑡, and ⊓
𝑡∈𝑇

Sep(𝑡) ⊑ ⊥.

Inductive Step. Denote the current set of mosaics by ℳ and assume a mosaic 𝑇 ∈ ℳ
is eliminated because it violates existential saturation. This means that there are 𝑡 ∈ 𝑇 and

∃𝑟.𝐶 ∈ 𝑡 such that whenever 𝑇 ′ ∈ ℳ satisfies (i) 𝑇 ⇝𝑠 𝑇
′

for all 𝒪 |= 𝑟 ⊑ 𝑠, and (ii) contains

some 𝑡′ ∈ 𝑇 ′
with 𝑡⇝𝑟 𝑡

′
and 𝐶 ∈ 𝑡′ then 𝑇 ′ /∈ ℳ. Consider the set:

𝒟 = {𝑡′/𝑠 | 𝑡
′ ∈ 𝑇, 𝑠 ∈ Σ, and 𝒪 |= 𝑟 ⊑ 𝑠} ∪ {{𝐶} ∪ 𝑡/𝑟}.

It follows that every completion 𝑇 ′
of 𝒟 was already eliminated from ℳ: left and right part of

the union correspond to parts (i) and (ii) of the violated condition. Lemma 6 provides us with a

separator Sep𝒟 for 𝒟. We use Sep𝒟 to get a separator Sep for 𝑇 as follows. We put:

Sep(𝑡′) = ⊓
𝒪|=𝑟⊑𝑠,
𝑠∈Σ

∀𝑠.Sep𝒟(𝑡′/𝑠) and Sep(𝑡) = ¬ ⊓
𝑡′ ̸=𝑡

Sep(𝑡′) = ⊔
𝑡′ ̸=𝑡

⊔
𝒪|=𝑟⊑𝑠,
𝑠∈Σ

∃𝑠.¬Sep𝒟(𝑡′/𝑠).

for every 𝑡′ ̸= 𝑡.



We claim that Sep separates 𝑇 . For every 𝑡′ ̸= 𝑡 we have 𝒪 |= 𝑡′ ⊑ Sep(𝑡′). This follows

because for every 𝒪 |= 𝑟 ⊑ 𝑠 with 𝑠 ∈ Σ we have |= 𝑡′ ⊑ ∀𝑠.𝑡′/𝑠 and 𝒪 |= 𝑡′/𝑠 ⊑ Sep(𝑡′/𝑠). To

show 𝒪 |= 𝑡 ⊑ Sep(𝑡) assume an interpretation ℐ |= 𝒪 with 𝑑 ∈ 𝑡ℐ . The point 𝑑 has an 𝑟-child

𝑒 satisfying {𝐶} ∪ 𝑡/𝑟 and hence also Sep𝒟({𝐶} ∪ 𝑡/𝑟). By definition of a separator, the image

Sep𝒟[𝒟] of Sep𝒟 is inconsistent. Thus, the fact that 𝑑 satisfies Sep𝒟({𝐶} ∪ 𝑡/𝑟) implies that

some concept 𝐸 ∈ Sep𝒟[𝒟] other than Sep𝒟({𝐶} ∪ 𝑡/𝑟) must be false at 𝑑. We therefore have

𝑑 ∈ (¬Sep𝒟(𝑡′/𝑠))
ℐ

for some 𝒪 |= 𝑟 ⊑ 𝑠 with 𝑠 ∈ Σ and some 𝑡′. Since for every 𝑠 ∈ Σ with

𝒪 |= 𝑟 ⊑ 𝑠 we have 𝑑 ∈ (𝑡/𝑠)
ℐ

and thus 𝑑 ∈ (Sep𝒟(𝑡/𝑠))
ℐ

, it follows that 𝑡′ ̸= 𝑡. This proves

that 𝑑 ∈ (Sep(𝑡))ℐ . Note that Sep[𝑇 ] is inconsistent by definition: the concept Sep(𝑡) is just a

negated conjunction ⊓
𝑡′ ̸=𝑡

Sep(𝑡′) of the rest. This completes the proof that Sep separates 𝑇 .

This finishes the construction of separators for every eliminated mosaic. To construct the

actual interpolant, note that Lemmas 1 and 5 imply that, if there is an 𝒜ℒ𝒞(Σ) interpolant for

𝒪 |= 𝐶0 ⊑ 𝐷0, then all completions of {𝐶0,¬𝐷0} have been eliminated. Lemma 6 provides us

with an 𝒜ℒ𝒞(Σ) separator Sep for {𝐶0,¬𝐷0} and it is easy to see that Sep(𝐶0) is the sought

𝒜ℒ𝒞(Σ) interpolant.

It remains to analyze the DAG size of the constructed separators, which we do by counting

the number of sub-formulae used in the constructed separators. On a high-level, we construct

one formula for every type in every eliminated mosaic. This formula is of negligible size 1 in

the inductive base, so let us analyze the inductive step. This step relies on Lemma 6, and one

can see that the construction in Equation (*) uses double exponentially many sub-formulae.

It remains to note that the Lemma is invoked only double exponentially often and that the

construction of the separator formulae for the just eliminated concept introduces only double

exponentially many sub-formulae. This completes the proof of Theorem 4.

We finish the section with some remarks regarding the size of the constructed interpolants.

First, we strongly conjecture that there are examples in which the interpolant is forced to have

double exponential role depth, so the upper size bound in Theorem 4 is optimal. Second, it is

known that the size of DAG representation of interpolants in standard DLs enjoying the CIP is

at most exponential [6, Theorem 3.26] and thus there is an exponential gap.

4. Qualified Number Restrictions

We are concerned with computing 𝒜ℒ𝒞 interpolants of concept inclusions in 𝒜ℒ𝒞𝒬 under

𝒜ℒ𝒞𝒬 ontologies. We use the same notation for 𝒜ℒ𝒞𝒬 as in the previous section for 𝒜ℒ𝒞ℋ,

defined in the obvious way. Our first result is that (Σ, 𝑛)-uniform 𝒜ℒ𝒞 interpolants can be of

non-elementary size.

Theorem 7. There is an 𝒜ℒ𝒞𝒬 concept 𝐶0 and signature Σ such that there is no (Σ, 𝑛)-uniform
𝒜ℒ𝒞 interpolant of 𝐶0 smaller than Tower(𝑛− 2).

Proof. Take the concept 𝐶0 = (≤ 1 𝑟.⊤), signature Σ = {𝑟, 𝑠, 𝑠′}, and let 𝑛 > 0. Using

𝒜ℒ𝒞(Σ) concepts ∃𝑟.𝐶 → ∀𝑟.𝐶 one can show the lower bound in the same way as in the proof

of Theorem 3.

The main result of this section is as follows.



Theorem 8. Let 𝒪 be an 𝒜ℒ𝒞𝒬 ontology, 𝐶0, 𝐷0 𝒜ℒ𝒞 concepts, and Σ be a signature. If there
is an 𝒜ℒ𝒞(Σ) interpolant for 𝒪 |= 𝐶0 ⊑ 𝐷0, then there is one of 3-exponential size which can be
constructed in 4-exponential time in ‖𝒪‖+ ‖𝐶0‖+ ‖𝐷0‖.

Fix an 𝒜ℒ𝒞𝒬 ontology 𝒪, 𝒜ℒ𝒞𝒬 concepts 𝐶0, 𝐷0, and a signature Σ. Our algorithm

for computing interpolants again relies on a mosaic elimination procedure that determines

the mosaics for which there is a model ℐ of 𝒪 which realizes the types in 𝑇 in mutually

Σ-bisimilar nodes. To formalize the elimination condition, we need some new notation. Let

𝑚∙ ∈ N be maximal such that (≥ 𝑚∙ 𝑟.𝐶) occurs in sub(𝒪, 𝐶0, 𝐷0) for some 𝑟, 𝐶 . Let

𝑁∙ = {0, . . . ,𝑚∙} ∪ {∞}, and define < and + on 𝑁∙
as usual by setting, for instance,

𝑚∙ < ∞ and 𝑘 +∞ = ∞. For a role name 𝑟 and type 𝑡, a witnessing function 𝑤𝑟,𝑡 assigns to

every type 𝑡′ a 𝑤𝑟,𝑡(𝑡
′) ∈ 𝑁∙

such that for each (≥ 𝑛 𝑟.𝐶) ∈ sub(𝒪, 𝐶0, 𝐷0), (≥ 𝑛 𝑟.𝐶) ∈ 𝑡 iff∑︀
𝐶∈𝑡′ 𝑤𝑟,𝑡(𝑡

′) ≥ 𝑛. If 𝑡 is realizable, then there exists a witnessing function 𝑤𝑟,𝑡 for each role

name 𝑟: take a model ℐ of 𝒪 realizing 𝑡 in a node 𝑑 and define

𝑤𝑟,𝑡(𝑡
′) =

{︃
𝑛 if 𝑛 = |{𝑑′ ∈ ∆ℐ | (𝑑, 𝑑′) ∈ 𝑟ℐ , 𝑡′ = tpℐ(𝑑

′)}| ≤ 𝑚∙

∞ otherwise.

(1)

Let 𝑇 be a mosaic, 𝑟 a role name, and (𝑤𝑟,𝑡)𝑡∈𝑇 be witnessing functions. To satisfy the types in a

mosaic in mutually Σ-bisimilar nodes one must be able to partition, for 𝑟 ∈ Σ, their 𝑟-successors

into mosaics so that the back- and-forth conditions of Σ-bisimulations hold. Our formalization

of this idea follows [18], but we modify the notation for our purposes. Say that a set 𝒮 of mosaics

is a mosaic partition for (𝑤𝑟,𝑡)𝑡∈𝑇 if one can assign to each 𝑡, 𝑡′ with 𝑡 ∈ 𝑇 and 𝑤𝑟,𝑡(𝑡
′) > 0 a

non-empty set 𝑎𝑟(𝑡, 𝑡
′) ⊆ 𝒮 (intuitively, the mosaics in 𝒮 containing 𝑡′ as an 𝑟-successor of 𝑡)

with 𝑡′ ∈ 𝑇 ′
for all 𝑇 ′ ∈ 𝑎𝑟(𝑡, 𝑡

′) in such a way that

• for every 𝑇 ′ ∈ 𝒮 and 𝑡 ∈ 𝑇 , there exists a 𝑡′ ∈ 𝑇 ′
with 𝑇 ′ ∈ 𝑎𝑟(𝑡, 𝑡

′);

• for all types 𝑡, 𝑡′, |𝑎𝑟(𝑡, 𝑡′)| ≤ 𝑤𝑟,𝑡(𝑡
′).

Let ℳ be a set of mosaics. A mosaic 𝑇 ∈ ℳ is bad if it violates one of the following conditions:

(Atomic Consistency) for every 𝑡, 𝑡′ ∈ 𝑇 and 𝐴 ∈ Σ, 𝐴 ∈ 𝑡 iff 𝐴 ∈ 𝑡′;

(Existential Saturation) for every role name 𝑟 ∈ Σ there are witnessing functions (𝑤𝑟,𝑡)𝑡∈𝑇
and a mosaic partition 𝒮 ⊆ ℳ for (𝑤𝑟,𝑡)𝑡∈𝑇 .

The following result is shown in [18] (using slightly different wording):

Lemma 9. (i) If the condition (Existential Saturation) is satisfied for some 𝑇 ∈ ℳ, then this is
witnessed by a mosaic partition 𝒮 ⊆ ℳ with |𝒮| ≤ 𝑚∙ × 22|sub(𝒪,𝐶0,𝐷0)|.

(ii) 𝐶0, 𝐷0 are jointly ∼𝒜ℒ𝒞,Σ-consistent under 𝒪 iff there is a set ℳ* of mosaics that does not
contain a bad mosaic and such that there is 𝑇 ∈ ℳ* and 𝑡1, 𝑡2 ∈ 𝑇 with 𝐶0 ∈ 𝑡1 and 𝐷0 ∈ 𝑡2.

It is a consequence of Lemma 9 that joint ∼𝒜ℒ𝒞,Σ-consistency under 𝒜ℒ𝒞𝒬 ontologies can

be decided in double exponential time. Indeed, an ℳ*
as in Lemma 9 can be found (if it exists)

by exhaustively eliminating bad mosaics from the set of all mosaics. Since the set of all mosaics

is of double exponential size, and each round of the elimination procedure can be performed in



double exponential time, the upper bound follows. By the link to interpolant existence provided

in Lemma 1, also 𝒜ℒ𝒞(Σ) interpolant existence is decidable in double exponential time.

We next exploit the elimination procedure to construct interpolants. Similar to the previous

Section 3 we compute an 𝒜ℒ𝒞(Σ) separator for every eliminated mosaic. It will be convenient

to actually compute something slightly stronger. Let ℳ be a set of mosaics. A function Sep
that maps every 𝑡 in some 𝑇 ∈ ℳ to an 𝒜ℒ𝒞(Σ) concept Sep(𝑡) is called general 𝒜ℒ𝒞(Σ)
separator for ℳ if for every 𝑇 ∈ ℳ the restriction of Sep to 𝑇 is an 𝒜ℒ𝒞(Σ) separator for 𝑇 .

We compute, by induction, a general 𝒜ℒ𝒞(Σ) separator for the set of eliminated mosaics.

Inductive Base. Assume 𝑇 has been eliminated because atomic consistency is violated.

Then there exists 𝐴 ∈ Σ such that the function Sep𝑇 defined by setting Sep𝑇 (𝑡) = 𝐴 if 𝐴 ∈ 𝑇
and Sep𝑇 (𝑡) = ¬𝐴 otherwise, is an 𝒜ℒ𝒞(Σ) separator for 𝑇 . Let ℰ0 be the set of all mosaics

that violate atomic consistency and let Sep𝑇 be defined as above for 𝑇 ∈ ℰ0. Then we obtain a

general separator Sep0 for ℰ0 by setting Sep0(𝑡) = ⊓
𝑇∈ℰ0

Sep𝑇 (𝑡), for all 𝑡 ∈ 𝑇 ∈ ℰ0.

Inductive Step. Assume ℰ𝑛 is the set of eliminated mosaics and Sep𝑛 is a general separator

for ℰ𝑛. Let ℳ𝑛 be the set of mosaics that have not yet been eliminated. Setting Sep𝑛(𝑡) = ⊤
for types 𝑡 that do not occur in any mosaic in ℰ𝑛, we may assume that Sep𝑛 is defined for all

types. Let 𝑇 be the mosaic eliminated in the next step. Then existential saturation is violated in

ℳ𝑛. Note that this implies that one can pick a role name 𝑟 ∈ Σ such that for every witnessing

functions 𝑤𝑟,𝑡, 𝑡 ∈ 𝑇 , and mosaic partition 𝒮 for (𝑤𝑟,𝑡)𝑡∈𝑇 there is an eliminated mosaic

𝑇 ′ ∈ 𝒮 ∩ ℰ𝑛. We fix such an 𝑟.

Let 𝒯 be the set of all types. Denote by 𝒱+
the set of all conjunctions 𝐶 = ⊓

𝑡∈𝒯
𝐿𝑡 with

𝐿𝑡 ∈ {Sep𝑛(𝑡),¬Sep𝑛(𝑡)}. For any nonempty subset ℬ ⊆ 𝒱+
we set as usual

∇𝑟(ℬ) = ( ⊓
𝐶∈ℬ

∃𝑟.𝐶) ⊓ ∀𝑟.( ⊔
𝐶∈ℬ

𝐶).

Let 𝛿𝑟(𝑡) be the disjunction of all ∇𝑟(ℬ) such that 𝑡 ⊓ ∇𝑟(ℬ) is satisfiable under 𝒪. Observe

that 𝒪 |= 𝑡 ⊑ 𝛿𝑟(𝑡). Take any 𝑡0 ∈ 𝑇 and set Sep(𝑡0) = ¬ ⊓
𝑡∈𝑇∖{𝑡0}

𝛿𝑟(𝑡) and Sep(𝑡) = 𝛿𝑟(𝑡) for

all 𝑡 ∈ 𝑇 ∖ {𝑡0}.

Lemma 10. Sep is an 𝒜ℒ𝒞(Σ) separator for 𝑇 .

Proof. It suffices to show that 𝒪 |= 𝑡0 ⊑ Sep(𝑡0), the remaining conditions are trivial. Assume

this is not the case. Then we have a model ℐ𝑡0 of 𝒪 and some 𝑑𝑡0 ∈ ∆ℐ𝑡0 such that 𝑑𝑡0 ∈
(𝑡0 ⊓ ( ⊓

𝑡∈𝑇∖{𝑡0}
𝛿𝑟(𝑡))

ℐ𝑡0 . Pick the (unique) ℬ ⊆ 𝒱+
such that 𝑑𝑡0 ∈ ∇𝑟(ℬ)ℐ𝑡0 . Then ∇𝑟(ℬ) is

a disjunct of each 𝛿𝑟(𝑡) with 𝑡 ∈ 𝑇 . Take interpretations ℐ𝑡 and 𝑑𝑡 with 𝑑𝑡 ∈ (𝑡 ⊓ ∇𝑟(ℬ))ℐ𝑡
for 𝑡 ∈ 𝑇 ∖ {𝑡0}. We may assume that all ℐ𝑡, 𝑡 ∈ 𝑇 , coincide (otherwise take their disjoint

union) and denote it by ℐ . Next define, for 𝑡 ∈ 𝑇 , 𝑤𝑟,𝑡(𝑡
′) as in (1). Then (𝑤𝑟,𝑡)𝑡∈𝑇 is a family

of witnessing functions. Let for each 𝐶 ∈ ℬ:

𝑇𝐶 = {tpℐ(𝑑) | there is 𝑡 ∈ 𝑇 with (𝑑𝑡, 𝑑) ∈ 𝑟ℐ and 𝑑 ∈ 𝐶ℐ}

By the definition of ℬ, 𝑇𝐶 ̸= ∅ for every 𝐶 ∈ ℬ. Observe that none of the mosaics 𝑇𝐶 is in ℰ𝑛
because otherwise 𝒪 |= ⊓

𝑡∈𝑇𝐶

Sep𝑛(𝑡) ⊑ ⊥ which is not the case since Sep𝑛(𝑡) is a conjunct of

𝐶 for all 𝑡 ∈ 𝑇𝐶 .



We show that {𝑇𝐶 | 𝐶 ∈ ℬ} form a mosaic partition for (𝑤𝑟,𝑡)𝑡∈𝑇 , and so derive a contradic-

tion. To this end define 𝑎𝑟(𝑡, 𝑡
′) ⊆ {𝑇𝐶 | 𝐶 ∈ ℬ} as

{𝑇𝐶 | there is 𝑑 ∈ 𝐶ℐ
with (𝑑𝑡, 𝑑) ∈ 𝑟ℐ and tpℐ(𝑑) = 𝑡′}

To see that 𝑎𝑟(𝑡, 𝑡
′) is as required, first observe that 𝑡′ ∈ 𝑇𝐶 for any 𝑇𝐶 ∈ 𝑎𝑟(𝑡, 𝑡

′). Next

assume that a 𝑇𝐶 with 𝐶 ∈ ℬ and 𝑡 ∈ 𝑇 are given. From 𝑑𝑡 ∈ (𝑡 ⊓ ∇𝑟(ℬ))ℐ we obtain

a 𝑑 with (𝑑𝑡, 𝑑) ∈ 𝑟ℐ and 𝑑 ∈ 𝐶ℐ
. Let 𝑡′ = tpℐ(𝑑). Then 𝑇𝐶 ∈ 𝑎𝑟(𝑡, 𝑡

′). The condition

|𝑎𝑟(𝑡, 𝑡′)| ≤ 𝑤𝑟.𝑡(𝑡
′) follows directly from the definitions.

Using Lemma 10 we obtain a general 𝒜ℒ𝒞(Σ) separator Sep𝑛+1 for ℰ𝑛 ∪ {𝑇} by setting

Sep𝑛+1(𝑡) = Sep(𝑡) ⊓ Sep𝑛(𝑡) for all 𝑡 ∈ 𝑇 and Sep𝑛+1(𝑡) = Sep𝑛(𝑡) for all remaining types.

This finishes the construction of separators for every eliminated mosaic. One can now

construct the actual interpolants in exactly the same way as in the previous section for 𝒜ℒ𝒞ℋ
via Lemma 6. To compute the size of the interpolants, observe that in the construction above

‖Sep𝑛+1(𝑡)‖ ≤ ‖Sep𝑛(𝑡)‖×22
2𝑓(𝑚)

with 𝑓 a polynomial function and𝑚 = ‖𝒪‖+‖𝐶0‖+‖𝐷0‖.

As Sep𝑛 stabilizes after at most double exponentially many elimination steps, ‖Sep𝑛‖ is bound

by a 3-exponential function in ‖𝒪‖+ ‖𝐶0‖+ ‖𝐷0‖. This bound remains 3-exponential under

DAG representation. The construction of Sep𝑛(𝑡) involves satisfiability checks for concepts of

3-exponential size, so overall the interpolant can be constructed in 4-exponential time.

5. Conclusion

We have presented first non-trivial algorithms for computing 𝒜ℒ𝒞 interpolants under 𝒜ℒ𝒞ℋ
and 𝒜ℒ𝒞𝒬 ontologies, relying on the new notion of polyadic separators tailored to store

witnesses for the fact that a mosaic (or set of types) cannot be realized in mutually bisimilar

models. Theorems 4 and 8 demonstrate the inherent difficulty of the problem and explain

why previously known techniques do not easily apply in the cases of 𝒜ℒ𝒞ℋ and 𝒜ℒ𝒞𝒬. It is

worth to note that Theorem 4 can be easily modified to obtain non-elementary lower bounds

for the size of uniform interpolants at the concept level in the presence of 𝒜ℒ𝒞ℋ ontologies.

These lower bounds, in turn, translate to non-elementary lower bounds for the size of uniform

interpolants at the ontology level in 𝒜ℒ𝒞ℋ. This implies that the resolution based calculus for

computing uniform interpolants of 𝒜ℒ𝒞ℋ ontologies from [21] cannot run in elementary time,

answering a question posed by the authors.

In the future, we would like to extend our algorithms to other standard DL constructors. While

we believe that this will be rather easy for some constructors, like inverse roles or the universal

role, we expect it to be much more involved in other cases such as nominals. In fact, already

unifying the two presented algorithms into one for computing𝒜ℒ𝒞 interpolants under𝒜ℒ𝒞ℋ𝒬
ontologies appears to be challenging. It would be also interesting to analyze our procedures

in the ontology-free cases (or with an ontology containing only role inclusions), for which we

expect smaller interpolants. From a practical perspective, it would be interesting to extend

implemented tableaux algorithms to be able to compute interpolants. Beyond description logics,

it would be very interesting to compute interpolants in the guarded and/or the two-variable

fragments of first-order logic [14] or in first-order modal logics [16].
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A. Missing Proof Details

Lemma 11. 𝐶0 and 𝐷0 are jointly ∼𝒜ℒ𝒞,Σ-consistent under 𝒪 iff there is a set ℳ* of mosaics
that does not contain a bad mosaic and such that there is 𝑇 ∈ ℳ* and 𝑡1, 𝑡2 ∈ 𝑇 with 𝐶0 ∈ 𝑡1
and 𝐷0 ∈ 𝑡2.

Proof (Sketch). For implication “⇒”, suppose that 𝐶0, 𝐷0 are jointly ∼𝒜ℒ𝒞,Σ-consistent under

𝒪, that is, there are models ℐ1, ℐ2 of 𝒪 and elements 𝑑1 ∈ 𝐶ℐ1
0 and 𝑑2 ∈ 𝐷ℐ2

0 such that

ℐ1, 𝑑1 ∼𝒜ℒ𝒞,Σ ℐ2, 𝑑2. Since 𝒜ℒ𝒞ℋ is preserved under taking disjoint unions, we can assume

without loss of generality that ℐ1 = ℐ2 = ℐ . We read off a set ℳ*
of mosaics by taking

ℳ* = { {tpℐ(𝑒) | ℐ, 𝑑 ∼𝒜ℒ𝒞,Σ ℐ, 𝑒} | 𝑑 ∈ ∆ℐ}.

It is routine to verify that ℳ*
satisfies the conditions formulated in Lemma 5.

For implication “⇐”, let ℳ*
be a set of mosaics that does not contain a bad mosaic and such

that there is 𝑇 * ∈ ℳ*
and 𝑡1, 𝑡2 ∈ 𝑇 *

with 𝐶 ∈ 𝑡1 and 𝐷 ∈ 𝑡2. We construct an interpretation

ℐ as follows:

∆ℐ = {(𝑡, 𝑇 ) | 𝑇 ∈ ℳ*
and 𝑡 ∈ 𝑇}

𝐴ℐ = {(𝑡, 𝑇 ) ∈ ∆ℐ | 𝐴 ∈ 𝑡}
𝑟ℐ = {((𝑡, 𝑇 ), (𝑡′, 𝑇 ′)) ∈ ∆ℐ ×∆ℐ | 𝑡⇝𝑟 𝑡

′
and for all 𝑠 ∈ Σ: ((𝒪 |= 𝑟 ⊑ 𝑠) ⇒ 𝑇 ⇝𝑠 𝑇

′)}

One can verify by structural induction that 𝐶 ∈ (𝑡, 𝑇 ) iff (𝑡, 𝑇 ) ∈ 𝐶ℐ
, for all 𝐶 ∈

sub(𝒪, 𝐶0, 𝐷0) and (𝑡, 𝑇 ) ∈ ∆ℐ
. Consequently, (𝑡1, 𝑇

*) ∈ 𝐶ℐ
0 and (𝑡2, 𝑇

*) ∈ 𝐷ℐ
0 . More-

over, following relation 𝑍 :

𝑍 = {(𝑡, 𝑇 ), (𝑡′, 𝑇 ) | 𝑇 ∈ ℳ*}

is a Σ-bisimulation. Since ((𝑡1, 𝑇
*), (𝑡2, 𝑇

*)) ∈ 𝑍 , we conclude that 𝐶0, 𝐷0 are jointly ∼𝒜ℒ𝒞,Σ-

consistent under 𝒪.
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