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Abstract

We propose an extension of Description Logics (DLs) with generic concepts and conditional axioms.
Inspired by object-oriented languages, generic concepts allow a compact definition of concepts with
similar structures. For example, one can define a generic concept Owner[X] to describe objects that
own another object from X, and later use a specific replacement of the parameter X, such as Owner|[Pet]
representing pet owners. Conditional axioms can be used to set bounds on the values that replace the
generic parameters. For example, we could restrict replacements of X in a concept Feeder[X] to only
subconcepts of Pet. As the set of possible parameter replacements can be infinite and even uncountable,
the generic extensions are, in general, undecidable. To identify decidable generic DLs, we focus on
the case of terminologies, requiring that variables are only used in definitions of generic concepts. We
formulate syntactic restrictions that allow reducing generic to classical entailment and further conditions
that ensure decidability.
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1. Introduction

Many large Description Logics (DLs) ontologies exhibit regularities in their syntactic structure
[1, 2], and there have been several proposals to model such regularities within the languages
so that ontologies are easier to maintain [3, 4, 5, 6, 7, 8, 9, 10, 11]. One proposal is to apply the
principles of generic programming for object-oriented languages [12] to ontologies. Generic
DLs [13] extend classical DLs with two new features: concept variables and parametrized
concepts. Concept variables are placeholders that can be replaced with (ordinary) concepts. For
example, a generic concept Jowns. X uses a concept variable X, which could be replaced with
(ordinary) concepts like Pet or Car resulting in (ordinary) concepts Jowns.Pet and Jowns.Car.
Parameterized concepts are a generalized form of atomic concepts, whose meaning may depend
on other concepts. For example, a parameterized concept Owner|X| can be used to describe
owners of objects from X, and could be defined using a generic axiom Owner[X| = Jowns. X.
Thus, Owner|[Pet] and Owner|[Car| describe two different kinds of owners.

Generic axioms can be interpreted in two ways: using the schema semantics and using the
second-order semantics [13]. Under the schema semantics, the axiom Owner[X| = Jowns. X
is regarded literally as an abbreviation of (countably-many) axioms Owner[C] = Jowns.C'
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obtained by replacing the concept variable X with all possible concepts C' from the language.
Under the second-order semantics, concept variables can be replaced with arbitrary subsets
of the interpretation domain. Second-order semantics is, generally, stronger than the schema
semantics because not every subset of a domain is an interpretation of some concept of the
language. However, entailment under the schema semantics can be computed using standard DL
algorithms by treating instances of parametrized concepts such as Owner[Pet] and Owner[Car]
as distinct atomic concepts. Schema entailment, however, may depend on the language in
which the replacement concepts C' are constructed: replacing with ££ concepts may result
in fewer entailments than replacing with ALC concepts (and fewer than for the second-order
entailment). Therefore, a central question for generic DLs is, when both semantics result in the
same entailments.

The previous work on generic DLs [13] shows that it is possible to ensure that second-
order entailment coincides with the schema entailment by limiting the base language to DL
EL and applying further syntactic restrictions. In this paper, we use a different approach:
Instead of restricting the type of concept constructors that can be used in ontologies, we restrict
the shape of axioms. Specifically, we allow definitions of (generic) atomic concepts of form
A[Xq,...,X,] = C where the left-hand side is a parametrized concept and the right-hand side
C is an arbitrary (SROZQ) concept containing only the variables X; (1 < i < n) present on
the left. A terminology is a set of such concept definitions in which every concept is defined
at most once. We can also allow partial concept definitions of the form A[X,,...,X,] C C,
also when the partially defined atomic concept may appear in several such partial definitions,
because they can be rewritten to concept definitions using concept conjunction and fresh atomic
concepts. We also allow the ontology to contain any number of ground axioms, i.e., axioms that
do not contain concept variables.

Sometimes, it is useful to further restrict (partial) definitions by limiting the scope of param-
eters for which they can be used. For this purpose, we introduce a new type of axiom called
conditional axiom. Similarly to bounds in generic programming [12], conditional axioms allow for
restricting the concepts/domain-subsets that are considered for concept variables. A conditional
axiom consists of a range of conditions and a target axiom: {1, ...,7,} = [, the conditions, as
well as the target axiom, are classical axioms (potentially using generic concepts). For example,
this allows us to specify different kinds of contents: X T File = Contents[X] C Data,
X C Food = Contents[X] C Nutrients, X T Law = Contents[X] C Paragraphs. If
a parameterized concept is applied to an argument that is not satisfied by the conditions, we
consider it to be undefined, and it can be interpreted arbitrarily, which aligns with the idea
of partial definitions. The terminological part of ontologies that we specify can also be cyclic.
For example, our DL extension is able to capture recursive data definitions such as a node of a
tree-structure: Node[X| = VhasSuccessor.Node[X ] M JFhasValue. X

In this paper, we present the following results. First, we show that reasoning under classical
ontologies extended with (only) conditional axioms can be reduced to reasoning with classical
ontologies allowing for negated axioms (Section 4). Second, using the conditional axioms, we
show that entailment for ground generic ontologies can be reduced to entailment for classical
ontologies (with conditional axioms) (Section 5). Third, we show that we can reduce reasoning
with a non-ground generic terminology to reasoning with a ground generic ontology using a
fixpoint approach; this approach allows us to extend a model of the ground part of a generic



terminology to a model of the whole ontology (Section 6). In Section 7, we explain how the
semantic restrictions from Section 6 can be achieved syntactically in practice. We start out with
a discussion of related work (Section 2), followed by the formal introduction of the generic
extension using conditional axioms (Section 3), and conclude with a discussion of our results
(Section 8).

Due to limited space, we provide most proofs and examples in the appendix.

2. Related Work

As mentioned in the introduction, our work is based on the existing generic extension of
description logics [13]. We differ from that work in the way we restrict the usage of generic
features to keep decidability. Instead of restricting the generic DL to a fragment of the extension
of £L, we work with the extension of DLs up to SROZ Q, but require that axioms with variables
are part of a terminology where each parameterized concept is defined at most once (multiple
partial definitions are also allowed). Additionally, we introduce a new feature of the generic
extension in this paper, namely, conditional axioms that allow us to restrict the range of concept
variables using classical axioms.

Apart from generic extensions, our approach is related to several other areas. Ontology parts of
similar syntactic structure are primarily studied in the field of Ontology Design Patterns (ODPs)
(3,4,5,6,7,8,9]. Similar to our reduction of second-order to classical reasoning, this method
employs variables to create axiom templates for deriving standard axioms tailored to particular
applications. The key distinction from our approach is that ODPs lack true generic concepts
like Owner[X] and do not possess model-theoretic semantics. Rather, ODPs are generally a
preliminary stage, substituting variables with concepts from predetermined sets of candidates
to form a classical ontology that can subsequently be used in the standard way. There are also
works in this area that are primarily concerned with finding repeating structures in ontologies
(usually with the goal of testing and defining new ODPs) [1, 2, 14].

A related but different concept are the Generators introduced by Kindermann et al. [10].
Those are a kind of rule language on top of DLs, consisting of rules called generators that
have axiom templates as conditions and targets. If a certain replacement of variables in the
conditions results in an axiom that is entailed by the ontology, then the target is added as an
axiom to the ontology for the same variable replacement. This is somewhat similar to our
conditional axioms, with the most important difference being that usage of these generators
requires the (manual) specification of a language of replacement concepts, while in our case,
the second-order semantics considers arbitrary subsets of the domain as replacements of the
concept variables.

Additionally, in the broader context of DL research, the idea of making axioms depend on
other axioms in the DL itself, like we do with conditional axioms, is also not completely new.
One example are so-called context description logics [15], which allow axioms to be dependent
on a concrete context, which is itself also formulated as a DL axiom. They differ from conditional
axioms in that contexts are defined outside the ontology in a special context ontology; there is
no direct connection between elements of the context axiom and the classical axiom targeted,
as we can establish by sharing variables; and finally, context DLs are a kind of multi-modal DL



allowing to formulate a kind of possibility and necessity on contexts, which we do not support.
We also differ from DL rules (e.g., [16]) because we do not leave the DL language to formulate
rules in First-Order Logic (FOL), but formulate conditional axioms directly in the DL of the
ontology itself and we quantify over concept variables, not variables for individuals.

3. Generic Extension

We start by formally defining the syntax of generic DLs with parameterized concepts, concept
variables, and conditional axioms.

Definition 1 (Syntax, extended from [13]). The syntax of generic DLs consists of disjoint and
countably infinite sets N¢ of concept names, each with an assigned arity ar(A) € N (A € N¢),
Nr, of role names, and Nx of concept variables. Given a base DL L that is a fragment of SROZQ,
we define by LX its corresponding generic extension, adding parameterized (atomic) concepts,
concept variables, and conditional axioms. Specifically, the set of LX -concepts is the smallest set
containing concept variables X € Nx, concept terms A[C1,...,C,], where A € No,n = ar(A)
and C; are LX -concepts (1 < i < n), and which is closed under the concept constructors of L.
The set of LX-axioms is the smallest set containing all axioms built from LX -concepts using the
axiom constructors of L, as well as axioms of the form I' = [ (conditional axioms), where (3 is a
non-conditional LX axiom and T is a set of such axioms. An LX-ontology is a (possibly infinite)
set K of LX-axioms.

For a conditional axiom o = (I" = f3), we call all elements «y € I" conditions of « and /3 the
target of o. All axioms that are not conditional axioms, i.e., I" is empty, we call unit axioms.
Note that all conditions and the target can only be unit axioms; conditional axioms can not
be nested.! We introduce a range of special notations to facilitate the discussion about LX
concepts and axioms.

Definition 2 (Adapted from [13]). Let the expression ex be either a LX -concept, a LX -axiom,
or a LX -ontology. We denote by sub(ex) (all) subconcepts of ex, i.e., substrings of the expression
that are valid concepts. For LX -concepts and LX -axioms (that are not using =), we split sub(ex)
into sub™* (ex) and sub~ (ex) the set of concepts that occur positively, respectively negatively,
in ex, sub(ex) = sub™ (ex) U sub™ (ex). For simple DLs occurring positively (negatively) simply
corresponds to occurring on the right side of the axiom under an even (odd) number of nested
negations or on the left side under an odd (even) number of nested negations, for more expressive
DLs this can be more difficult, see e.g., [17] for SROZQ. We denote by vars(ex) = sub(ex) N Nx
the set of concept variables occurring in ex. We say that ex is ground if vars(ex) = ().

A (concept variable) substitution is a partial mapping 0 = [X,/C4, ..., X, /C,] that assigns
concepts C; to concept variables X; (1 < i < n). We denote by 0(ex) the result of applying the
substitution to ex, defined in the usual way.

In the remainder of the paper, we differentiate between different versions of a DL as follows:
If concepts, axioms, and ontologies include concept terms, conditional axioms, and concept

'If conditional axioms were allowed to be nested, we would be able to express all boolean combinations over axioms.



variables, we call them generic. If this is not the case, i.e., the DL is not extended by us, we call
these classical.

As described in Section 1, we adapt the existing second-order semantics for generic extensions
[13] for usage with conditional axioms:

Definition 3 (Second-Order Semantics, adapted from [13]). A (second-order) interpretation
fora LX is a pairT = (AT, ), where AT is a nonempty set called the domain of Z and -~ is
an interpretation function, which assigns to every A € N¢ with arity n = ar(A) a function
AT . (QAI)“ — 227 and to everyr € Np a relation r? C AT x AT, A valuation for T (also
called a variable assignment) is a mapping n that assigns to every variable X € Nx a subset
n(X) C AL

The interpretation of LX -concepts CT" C AT is recursively defined by X7 = n(X) for
X € Ny, A[Cy,...,Cp)5" = AI(C’IZ’", ey CTIL’"), and is extended to other LX -concepts in the
usual way. Satisfaction of unit axioms 7 ):% B under Z and 7 is determined from the interpretation
of LX -concepts in (3 in the standard way. For example, T ):%] C C DiffCT" C DTN, The
interpretation of conditional axioms follows naturally, i.e., T ):3] I'=4,iff3yel: 1 |;r£727 v or
T =2 8. WewriteT =2 o if T l:% « for every valuation 7). Finally, for an ontology K, we write
7z }:3 K ifT =2 a for every a € K, and we write K |=2 « if T =2 K implies T =2 a.

We add a few remarks about this definition: First, for a classical ontology every second-order
model is a classical model and vice versa as the second-order interpretation only differs from a
classical interpretation in its treatment of atomic concepts (which we call parameterized concepts
in the generic DL) as functions, which is not relevant if we only have atomic/parameterized
concepts with zero arity as in the case of classical ontologies. Second, notice that for our
conditional axioms, the same 7 is considered for the conditions, as for the target, i.e., the Vn
quantification is outside the implication. This is important as we want conditions to restrict
the choice of subsets of the domain that are considered for the variables in the target axiom.
For example, all usages of X in {X C Pet} = Keeper[X] = Jowns.X M Jfeeds. X, must
be the same, and describe some kind of pet. Finally, we can easily reduce the entailment
of a ground axiom I' = f3, i.e, K = T' = f, to the unsatisfiability of K extended with T
and the conditional axiom {$} = T C L: Clearly, K ' = Siff CUT =  and if
KU{{f} = T C L} is unsatisfiable, then Z =  holds for every model Z of K, therefore
KET=pgif KUTU{{B} = T C L} is unsatisfiable.

4. Conditional Axioms

We start our analysis by considering the new feature introduced in this paper, i.e., conditional
axioms, on their own. That is, we consider the extension of classical DLs (only) with conditional
axioms (not yet concept terms or concept variables). For example, we allow axioms such as
{ACB,ACC}=3rACT.

This extension can be nondeterministically reduced to reasoning with negated axioms by
choosing for each conditional axiom either the target axiom or the negation of some condition
axiom. Then the satisfiability of our ontology with conditions coincides with the satisfiability
of (at least) one of these constructed ontologies.



Theorem 1. There is a non-deterministic algorithm that reduces in polynomial time the second-
order satisfiability of a classical ontology with conditional axioms to the classical satisfiability of
an ontology potentially including negated axioms.

The reduction described in Theorem 1 can be used for DLs, which can express negation of the
axioms appearing as conditions. For example, negations of concept inclusion axioms C' © D
can be expressed as {C(a), (—D)(a)} with a a fresh individual. Of course, for a less expressive
DL like £L, this raises the complexity of reasoning, as effectively we are using ALC reasoning.

5. Ground Ontologies

The approach described in the previous section allows us to remove conditional axioms from
ontologies to be able to use classical interpretations instead of second-order ones. With this
result, only two features still make it difficult to consider a generic ontology under classical
interpretations. The first are variables, the second are concept terms. We can leave variables
aside for now by considering only ground generic ontologies. To deal with concept terms,
a naive way to interpret them under classical interpretations is to simply consider them as
new atomic concept names.? Unfortunately, this has the side effect that we do not account
for equivalent axioms anymore, i.e., using classical interpretations in this way for an ontology
such as {C = D} we do not get A[C] = A[D] as a consequence because A[C] and A[D] are
two independent atomic concepts. On the other hand, clearly, for second-order semantics, we
get A[C] = A[D] as the function A7 applied to the same set M = C% = D7 twice, gives the
same result. To still be able to reduce second-order entailment to classical entailment using this
approach, we transform the given ontology using a closure that moves this treatment of equal
concepts from the semantics to explicit (conditional) axioms in the ontology:

Definition 4 (Congruence Closure). A congruence axiom is a (conditional) axiom of the form:
A=, Ci = Dy = A[Ch,...,Cy) = ADy, ..., Dy] wheren = ar(A) and C;, D;, LX -concepts
(1 <4 < n). The congruence closure of a ground ontology K is the extension of K with all
congruence axioms for which A[C1, ..., Cy] € sub(K) and A[Dy, ..., Dy] € sub(K).

Clearly, all congruence axioms are tautologies under the second-order semantics:
Lemma 2. Let o be a congruence axiom and T a second-order interpretation. Then T =2 a.

Lemma 3. Let K be a ground ontology and K' the congruence closure of KC (see Definition 4). Then
K is satisfiable under second-order semantics iff K’ is (classically) satisfiable.

Proof sketch. (=) We can easily construct a classical interpretation 7 from a second-order
model Z of K by setting A[CY,...,Cp]Y = AL(CE,...,CT). But then this new classical
interpretation is still a model of K and by Lemma 2 also a model of K'. (<) Likewise we
can construct a second-order interpretation Z from a classical model J of K’ by setting
AL(My, ..., M,) = A[Ch,...,C,]7 if there are such Cs that CZJ = M;. If this is not the case
we set AZ(My, ..., M,) = () as the default. Using the presence of the equivalence axioms, we
can show that the choice of C1, . .., C, is unambiguous. But then this new interpretation is a
model of K’ and therefore also a model of K. O

*This was done in the existing work on generic extensions, leading to syntactic restrictions [13].




Note that K’ can be computed in polynomial time in the size of K since the number of atoms
A[Ch,...,Cy] € sub(K) is linear in K. Therefore, we get the following result.

Theorem 4. Second-order satisfiability of ground ontologies with conditional axioms can be
reduced in polynomial time to satisfiability of ground ontologies with conditional axioms under
classical semantics.

6. Terminologies

Following the results regarding ground ontologies, in this section, we extend our results to the
non-ground case. The goal of this section is to reduce the (second-order) satisfiability of generic
non-ground ontologies to the (second-order) satisfiability of generic ground ontologies. With
the results from the previous sections, this gives us the ability to reduce reasoning with generic
ontologies to classical reasoning (with negated axioms).

Our approach works under the assumption that a given generic ontology consists of two
parts: a ground part containing arbitrary ground axioms and a terminological part consisting of
generic concept definitions. Our main result shows that, under certain semantic conditions, an
arbitrary model of the ground part can be extended to a model of the terminological part by
using a fixpoint operator reminiscent of defining the least fixpoint semantics for (cyclic) ££
terminologies [18].

Definition 5 (Generic Terminology). A (generic) complete concept definition is a conditional
axiom « of the form T’ = A[Xy,...,X,| = D wheren = ar(A) > 1 and vars(T") U vars(D) C
{X1,...,Xn}. Wecall A[X1, ..., X,] the defined concept of & and D its complete description. A
(generic) partial concept definition is a conditional axiom « of the formT' = A[X;,..., X, | © D
where n = ar(A) > 1. We call A[X1,...,Xy] the defined concept of a and D its partial
description. A concept definition is either a partial or complete concept definition. A (generic)
terminology is a set T of concept definitions, such that no two different axioms define the same
(generic) concept, i.e., A[X1,...,X,] is either defined in one complete concept definition or in one
or more partial concept definitions, but not both.

For a given generic terminology, we call parameterized concepts that occur as the defined
concept of a complete concept definition, completely defined concepts, denoted as Nyf, and
parameterized concepts that occur as the defined concept of a partial concept definition, par-
tially defined concepts, denoted as Npai. All other parameterized concepts occurring in the
terminology are called primitive concepts, denoted Npiy. It should be noted that we permit
cyclic dependencies among the defined concepts. We do not consider an axiom as a proper
complete concept definition if a variable occurs in the conditional axiom, but not as an argument
of the defined concept. In this case, the definition would not be unambiguous, for example,
A[X] = X N 3r.Y does not clearly define how A[C] should be interpreted. This problem
does not occur for partially defined concepts, as in cases where a complete definition would
be ambiguous, the option that interprets the parameterized concept as the smallest set can be
chosen. See Example 1 for a number of examples of concept definitions.

As said above, we want to take a model of the ground part of an ontology and extend it
to a model of the whole ontology (including the non-ground but terminological part). This



means that given a model of the non-ground part Z, we can only change the interpretation
of parameterized concepts for arguments that do not occur in the ground part, e.g., if A[C]
is a concept in the ground ontology, we may not change the interpretation of AZ(M) for the
argument M = C7 in order to ensure that our resulting interpretation still is a model. What
we can change is the interpretation for “unknown” M's. We formalize these allowed changes in
the following definition.

Definition 6 (Terminological Expansions). Let G be a ground generic ontology, T a generic
terminology, and T a model of G, i.e, T = G. Wecall aset M C AT known ifthereisa C' € sub(G)
such that CT = M, otherwise it is unknown. A subset of P(A”) is unknown if at least one member
is unknown. Then a terminological expansion of I is an interpretation J = (A7 ,-7), such
that A7 = AT, ¥r € Np : r7 = vL,VC € sub(G) : CI = C7, for A € Npare and
My, ..., M, C AT unknown, A(My,...,M,)? = 0, and VA € Noprim BY = B%. By
Txg,7(Z) we denote the set of all terminological expansions of Z. We omit G and T if they are
irrelevant or clear from the context.

We additionally define the following ordering on Tx(Z): If 71, J2 € Tx(Z), then Jh <7 J2 iff
VA € Ny, VM, ..., My C AT A(My, ..., My)T C A(M, ..., M,)%.

Note thata J € Txg 7(Z) differs from Z only in the interpretation of defined concepts when
those are applied to unknown arguments, i.e., to subsets of the domain that are not “represented”
by any concept that occurs in G. This makes sure that for all concepts in G, J and Z coincide,
ie,JE2G.

We choose to interpret partially defined concepts as the empty set in the expansions. The
advantage of this is that for partially defined concepts and unknown arguments, we immediately
know that their definition is entailed by every J € Txg 7(Z).

Definition 7. An LX -ontology K is said to be admissible if IC = G U T, where:

1. G is a ground ontology,

2. T is a (generic) terminology,

3. If A[X1,...,X,] is defined by some o € T then for every substitution 0 such that
O(A[X1,..., X)) € sub(G) it holds that G |=2 6(a),

4. If D is the description of some completely defined concept in T, Z a model of G and J1 <1 J2,
then D71 C D2 for every valuation 1.

The notion of an admissible ontology ensures that an extension of a model of the ground part
to a model of the terminological part is always possible. Condition 3 prevents a clash of the
knowledge of the ground and the terminological parts, e.g., having an axiom T C A[B]in G
and an axiom A[X] = L in T violates this condition. Furthermore, Condition 3 ensures that
for known arguments, definitions in 7 are entailed by every J € Txg 7(Z). This means we
do only need to choose a J € Txg 7(Z) that also entails complete definitions for unknown
arguments to get a model of K. To find this 7, we use an approach that (starting from 7)
changes the interpretation of completely defined concepts step-by-step to get closer to their
definition, until a fixpoint is reached.

For such a fixpoint to exist, we need to make sure that the interpretation only increases
from step to step. Because we allow defined concepts in the descriptions in 7, this can only



be ensured if descriptions are always upward monotone in all fully defined concept terms. For
example, if we had A[X| = —B[X], this would not hold, as if we assume that B[X] increases
with every step of our expansion, then A[X| would at the same time decrease. Indeed, if this
monotonicity were not required, we would be able to express General Concept Inclusions (GClIs)
in our terminology. The reason for this is similar to absorption [19]: We can express a GCI
C[X] C D[X]as T = =-C[X] U D[X] and, because this is not allowed as a terminological
axiom (as T is not a parameterized concept), we use A[X| = - A[X] M =B[X] to be able to use
B[X] = -C[X]U D[X] instead of T. To prevent such cases, we use Condition 4 in Definition 7.
See Example 2 for a number of examples of admissible or non-admissible ontologies.

Definition 8 (One Step Expansion). Let K = GUT be an admissible ontology according to Defini-
tion 7andZ a model of G. The one-step expansion is a function 1Expy 7 : Txg 7(Z) — Txg 7(Z)
such that 1Expy 7(J) is the interpretation J' € Txg 1(I) defined by changing the interpre-
tation of completely defined concepts in the following way: Let A € Ny, My, ..., M, C AT
unknown, if A is defined byT" = A[X4,...,X,| =D € T thenforn ={X1/Mi,..., X, /M,}:
AT (M, ..., M,) = DI

Intuitively, the one-step expansion 1Exp(/7) is the result of updating the interpretation of
completely defined concepts (when applied to unknown arguments) by using their description.
Note that the conditions of Definition 5 ensure that one-step expansion of .7 is well-defined. In
particular, the definition is unambiguous because every parameterized concept is completely
defined in 7 at most once, and all concept variables appearing in this definition must be
parameters of this concept. In this procedure, we do not take the conditions I' into consideration,
because if we make sure that in the extended model the definition A[X,..., X,,] = D holds
for every choice of X, then it also holds in the cases where I is also entailed. Disregarding I
can also not lead to contradictions: A contradiction with another axiom in 7 is not possible,
because every parameterized concept is only completely defined once (regardless if conditions
are present or not); And a contradiction with G is not possible because of we only change the
interpretation for unknown arguments.

We are now ready to show the final result of this section. We use here that the one-step
expansion we defined is a monotone function on the set of terminological expansions, giving us
the guaranteed existence of a fixpoint. This fixpoint is our new model of the whole ontology XK.

Theorem 5. Let . = G U T be an admissible ontology and G second-order satisfiable, then KC is
second-order satisfiable.

Proof sketch. Given a model T = (A, 1) of G, we show that the fixpoint of 1Expy 7 exists
and is a model of K. To show this, we use our Requirement 4 of Definition 7, which gives us
the monotonic behavior of descriptions. From this, the monotonic behavior of the one-step
expansion follows naturally. Together with the observation that <7 builds a lattice on Tx(Z),
this gives us the existence of a fixpoint of the one-step expansion. This fixpoint is (still) a model
of the ground part of the ontology, but also of the terminological part. This follows because, as
it is a fixpoint, the one-step expansion does not change the interpretation of defined concepts
anymore; therefore, those defined concepts already correspond to their description, and the
definitions in 7 are modeled. O



7. Ensuring Admissibility

In the previous section, we have shown that the satisfiability of a generic ontology with an
arbitrary ground part and a terminological non-ground part can be reduced to the satisfiability of
the ground part only. The requirement for this result is, that the given ontology is admissible, i.e.,
fulfills certain restrictions: First, for a defined concept, the definition must already be entailed
for known arguments by the ground part (Case 3 of Definition 7), second the descriptions of
completely defined concepts need to be (upward) monotone in the contained completely defined
concepts, i.e., increase if the interpretation of subterms increases (Case 4 of Definition 7). In
this section, we discuss how these restrictions can be achieved in practice.

Definition 9 (Ground Expansion). Given a generic ontology K, consisting of a ground part G and
a generic terminology T, i.e, K = G U T, we define the ground expansion Exp(G) as the set of
axioms achieved in the following way: All axioms in G are in Exp(G). Then we repeatedly check
if for A[C1, . . .,Cp] € sub(Exp(G)) such that A is defined by o in T, we have Exp(G) =2 0(«)
for0 = {X1/Ch,...,X,/Cp}. If this is not the case, we add 0(«) to Exp(G). We repeat this
until no new axioms are added to Exp(G).

This procedure does not terminate in every case. To achieve termination, it is important that
there are no nested concept terms in 7. If this were the case, e.g., we would have B;[By[X]] €
sub(7), then any replacement of X with a concept C from A[...,C,...] € sub(Exp(G))
results in a new concept B1[B3[C]] € sub(Exp(G)), which again results in a new concept
B1[B2[B2]C]]] € sub(Exp(G)) and so on. This would result in an infinite Exp(G). If we do
not have such nested concept terms, calculating the expansion of G takes at most exponential
time. This is because, in the worst case, we have to ground every terminological axiom with
every set of concepts occurring as arguments of concept terms in K.

Clearly, if the original K is satisfiable, then the resulting Exp(G) is also satisfiable, as we
only add instances of axioms in 7. Furthermore, it is easy to see that now X' = Exp(G)U T
fulfills Case 3 of Definition 7, therefore (assuming that Case 4 of Definition 7 also holds) we can
check the satisfiability of Exp(G) to determine if K is satisfiable by Theorem 5.

We now consider how to achieve the monotonicity of concept descriptions (i.e., Case 4 of
Definition 7). A simple syntactic condition that is sufficient to achieve this monotonicity is to
require that concept terms using a completely defined concept may only occur positively in a
concept description. It is well known that positive polarity of subterms results in the concept
being upward monotone in the subterm (see e.g., [20]). Using a suitable definition of positive
polarity for SROZQ (e.g., [17]) this can be shown in general using induction on the structure
of the concept description. In our case, it is sufficient to require the positive polarity for concept
terms using completely defined concepts, because the interpretation of other concepts is fixed
in Tx(Z).

Taking these remarks together with our earlier results, we obtain the following reduction as
a consequence of Theorems 1, 4, and 5:

Corollary 6. Given a generic ontology K satisfying the following conditions: (1) Axioms are either
ground or concept definitions; (2) there are no nested concept terms in these definitions; and (3)
non-ground concept terms using completely defined concepts only occur positively in descriptions.



The satisfiability of KC under second-order semantics can be reduced in exponential time to the
satisfiability of classical ontologies with negated axioms.

8. Discussion and Conclusion

Generic DLs were introduced to efficiently handle collections of similar axioms in ontologies,
offering advantages akin to those of generic classes in programming: A parameterized concept’s
definition can be applied in various contexts, minimizing the necessity for duplicating and
altering intricate concept structures. This method supports modular ontology construction and
aids in preventing mistakes that may occur during axiom refactoring. Unfortunately, existing
generic extensions [13] were limited to fragments of the extension of £L.

In this paper, we lift this restriction, showing the decidability of generic extensions of
expressive DLs up to SROZQ. We achieve this by requiring that axioms with variables are
only used to define parameterized concepts, while they can be used freely when ground. This is
a reasonable restriction as this captures the initial idea of generic concepts, namely being a way
to combine the definition of many similar concepts into one place. It also corresponds to the
historic development of DLs, which also started with terminologies.

We also introduce a new feature of generic extensions, namely, conditional axioms. These
allow us to formulate conditions under which an axiom should hold, while in interpretations
where these conditions do not hold, the axiom can be ignored. Conditional axioms are a natural
addition to generic DLs, akin to bounds in generic programming. They can be used as a check
on variable replacements in concept terms, allowing to select one (or more) of potentially many
partial definitions given for a parameterized concept in an ontology. Furthermore, conditional
axioms are also an advantage for complete definitions, for example, we can formulate that the
definition of Keeper[X] “makes sense” only when X describes some set of pets, i.e., {X C
Pet} = Keeper[X]| = Jowns. X M Ifeeds. X. This prevents modeling errors, where Keeper|:]
is used with some wrong argument, such as Keeper[Car].

Planned future work involves an implementation of the approach presented here, as well as
studies to analyze the potential of existing ontologies to benefit from generic extensions, i.e.,
what reduction of inherent complexity is possible, as well as a tool for an automatic translation
of existing ontologies to the generic extension.

In summary, the findings in this paper demonstrate that it is possible to get generic extensions
of expressive description logics that are still decidable, provided certain reasonable restrictions
are applied. Additionally, the introduction of conditional axioms allows to use generic concepts
in a more targeted way, by restricting the replacement of parameters. This is a valuable addition
to the area of generic description logics, as well as to the broader research area that deals with
exploiting syntactic regularities in ontologies.
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A. Additional Material for Section 4: Conditional Axioms

Theorem 1. There is a non-deterministic algorithm that reduces in polynomial time the second-
order satisfiability of a classical ontology with conditional axioms to the classical satisfiability of
an ontology potentially including negated axioms.

Proof. Let K be a classical ontology with conditional axioms. Let K’ be obtained from K by
adding (1) all unit axioms to K’ and (2) for each (conditional) axiom {71,...,7,} = 8 € K, K’
adding non-deterministically either 5 or one of —; for some 1 < ¢ < n. If K is satisfiable, then
for some of these choices K’ is satisfiable:

Given Z =2 K, we can construct one such K’ as follows: For each @ € K, we do the following:
If v is a unit axiom, then a € K’ otherwise a = {v1,...,7,} = 53, and as Z = « either
3j(1 <j <n):T - ;and we add =y; to K’ or Z |= /3, and we add 3 to K'. Then Z = K’
and because K’ contains the non-conditional axioms of K and for each conditional axiom, either
one of the negated conditions or the target is in K’, K’ fulfills the construction described above.

Conversely, if K’ is satisfiable then K is satisfiable in the same interpretation: Take Z such
that 7 |= K, we show that 7 |=2 K: Take o € K either « is non-conditional and o € K’ or
a={7,...,7} = Bandeither 3y; : Z = —+yjthenZ F2 aorZ = fand Z 2 .

This gives us a non-deterministic polynomial time reduction. d

B. Additional Material for Section 5: Ground Ontologies

Lemma 2. Let o be a congruence axiom and T a second-order interpretation. Then T =2 a.

Proof. Let « be a congruence axiom (Definition 4), Z a second-order interpretation, and 7 a
variable assignment. If C’iz £ DZ-I”7 for some i (1 < i < n), then, trivially, Z l:% a. Other-
wise (A[CY,...,Cu)) T = AZ(CEN, ..., CE") = AL(DE", ..., DE") = A[Dy, ..., D,])%n,
which, likewise, implies 7 ):% «. Since 1) was arbitrary, we proved Z =2 a. O

Lemma 3. Let K be a ground ontology and K' the congruence closure of K (see Definition 4). Then
K is satisfiable under second-order semantics iff K' is (classically) satisfiable.

Proof. (=) Let T = (AZ,.) be a second-order interpretation such that Z =2 K. Define the
classical interpretation J = (A7, -7) with A7 = AT and A[C1,...,C,])Y = AL(CE,...,CT)
for every A € N¢,n = ar(A) and C; ground L& -concepts (1 < i < n),and 7 = rZ for every
r € Ng. Note that this definition implies that DY = DZ for every ground LX-concept since
the extension of interpretation under concept constructors is defined in 7 and 7 in the same
way. Likewise, Z =2 a iff J |= « for every ground LX-axiom a. Hence, from Z =2 K, we
obtain J |= K. Further, by Lemma 2, T =2 « for every congruence axiom a € K'. Hence
JEK.

(<) Let J be a classical interpretation such that J = K’. Define the second-order
interpretation Z = (AT, 1) with AT = A7, AL(My,...,M,) = A[C,...,Cn)7 if
AlCt,...,Cy] € sub(K) and M; = C’ZJ (1<i<n),and AZ(My,..., M,) = () in the remain-
ing cases, and r* = r7 for every r € Ng. Notice that the interpretation of A7 (M, ..., M)
is well-defined, i.e., it does not depend on the choice of the atom A[CY, ..., C,] € sub(K) such



that CZ = M; (1 < i < n). Indeed, for every other choice A[Dy,...,D,] € sub(K) such
that D;7 = M; (1 < i < n), by Definition 4, the congruence axiom belongs to K’, and since
J E K and CY = DY (1 <i < n), we obtain A[C1,...,C,]7 = A[Dy,...,D,])Y. Since
AlCy,...,C)Y = AL(CE, ... CF) for every A[Cy,...,Cp] € sub(K), similarly like in the
case (=), it follows that Z =2 « iff J |= « for every o € K. Since J = K’ and K C K, it
follows that Z =2 K. O

Theorem 4. Second-order satisfiability of ground ontologies with conditional axioms can be
reduced in polynomial time to satisfiability of ground ontologies with conditional axioms under
classical semantics.

Proof. Let K be a ground ontology with conditional axioms, and K’ its congruence closure
according to Definition 4. Note that K’ can be computed in polynomial time in the size of
KC since the number of atoms A[C1,...,Cy] € sub(K) is linear in K. The statement of the
theorem now follows directly from Lemma 3. O

C. Additional Material for Section 6: Terminologies

Example 1. The following axioms are concept definitions:

e ={XCIrX}=AX]|=Ir(XNAX)

« ag = B[X]=-A[XNC]|

« a3 = B[X] = E[A[X NC]]

ey =FE[X]=-X

cas={XC3rY}= AX]C B[X,Y]N3s.Y
cas={X CA]Y],ZC B[Y]} = A[X]| C A[B|Z]]

The following axioms are not:

« f1=AC]=3IrC

. By ={X CIrY} = AX] = B[X]
« f3=B[X]|=XN3rY

« By=A[C]C L

The sets T1 = {a1, a0} and To = {as, ag} are terminologies, but the set T3 = {aq, s} is not.

Example 2. (Example 1 continued) Take Ky = {A[L] = L} U {a1} this is admissible. Indeed,
Conditions 1 and 2 of Definition 7 clearly hold. Condition 3 holds because A[L] is the only
instance of a defined concept appearing in the ground part Gy, and for 0 = {X — L}, we
have G = O(an) = {L C Ir.L} = A[L] = Ir(L M A[L]). Condition 4 holds because for
D =3r.(X M A[X]) andanyT C J, we have A[X 5" C A[X]7" for every valuation 1. Hence
DInc pIn,

Ontology Ko = {2} is admissible. We only need to check condition 4. But as A is not a defined
concept, J1 and [J> interpret A exactly the same.

Similarly Ks = {4} is admissible, as for the same valuation, the interpretation of the description
of £ is always the same.



Ontology Ky = {1, aa} is not admissible. Again, we only need to check condition 4, but in this
case, we have that A is indeed a defined concept. So we would need to have that (—~A[X 1 C])7t C
(=A[X M C))%2. The interpretation of X and C' is not changed between J, and J, but we know
that we can have ATV (M) C AJ2(M) so in fact we can have (~A[X M C])7t D (=A[X NC))7>
and the condition does not hold.

Similarly, ontology K5 = {a1, a3} is not admissible. This is because, again, we do not have
monotonicity of the description of B. Realize that EJ1 (A9 (M)) C EJ2(A%2(M)) does not
necessarily hold, because we only know that EY1 (M) C EJ2(M) holds for the same M not for
different ones. In fact, if we add the axiom oy (which is admissible on its own) to K5, we get

Ks =2 K.

Theorem 5. Let . = G U T be an admissible ontology and G second-order satisfiable, then K is
second-order satisfiable.

Proof. Given a model Z = (AZ,-T) of G, we show that the fixpoint of 1Expy 7 exists and is a
model of K.

We start by showing the monotonicity of the one-step expansion, i.e., J1 =<7 J2 implies
1Exp(J1) =7 1Exp(J2). By Definition 8, we need to show AMP(T) (A ... M,) C
AYE(2) (M. M) for all unknown My, ..., M, C AT, Letn = {X; — M;} then
by Definition 7 Case 4, DV C D721 and A(My, ..., Mn)lEXp(Jl) = DN C pPn =
AYER(TR) (ML M,).

As one can easily see that <7 is a complete lattice on Tx(Z). Then by Tarski’s Fixpoint
Theorem [21], 1Expy 7 has a fixpoint, let J denote this fixpoint. As J € Txg 7(Z) we know
JE%G.

We now show that J |=* 7. Take I' = § € T and some 7, we show that 7 =} T' = §. If
J I;é% I', we are finished. Otherwise, we show that J }:,27 [. Assume that 3 (partially) defines
A[X1, ..., X,]. If we have A[Cy,...,Cy] € sub(G) and n(X;) = CY (1 < i < n), then by
Definition 7 Case 3, G =2 [X1/C1, ..., X,,/Cp](8) and as J |=? G, J =7 f. Otherwise, if
B = A[X1,...,X,] C D, then by Definition 6, A[X71, ..., X,,]7*" = () and therefore J =2 S.
Finally, if 8 = A[X1, ..., X,,] = D, because 7 is a fixpoint of the one-step expansion, we know
that applying the one-step expansion to 7 does not change the interpretation of 3. Then we
know that for the interpretation of A[X71, ..., X,] this means that A[X1, ..., X,]Y" = DI"
and J ):727 8.

Therefore, we have shown that there is a model 7 such that J = K. O]
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