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Abstract
This extended abstract reports on work that was published in the proceedings of FLAIRS-38. In previous
work it was shown that the logic𝒜ℒ𝒞ME, which extends the description logic (DL)𝒜ℒ𝒞 with probabilistic
conditionals, has domain-lifted inference. In the FLAIRS-38 paper, we extend this result from the base
logic 𝒜ℒ𝒞 to two logics that can count, the two-variable fragment C2 of first-order logic (FOL) with
counting quantifiers, and the DL 𝒜ℒ𝒞𝒮𝒞𝒞, which can formulate expressive counting constraints on
role successors and is not a fragment of FOL. As an auxiliary result, we prove that model counting in
𝒜ℒ𝒞𝒮𝒞𝒞 can be realized in a domain-liftable way.
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1. Introduction

Description logics (DLs) [1, 2] are a well-investigated family of logic-based knowledge rep-
resentation formalisms, which can be used to formalize the terminological knowledge of an
application domain in a machine-processable way. For instance, large medical ontologies such
as SNOMED CT1 and Galen2 have been developed using an appropriate DL. While classical DLs
are often sufficient for formalizing certain knowledge like the definition of medical terminology,
they cannot adequately express uncertain knowledge, which may, e.g., be needed for medical
diagnosis. Using a non-medical example, the concept of a father can be formalized by the con-
cept inclusion (CI) Father ⊑ Human ⊓ Male ⊓ ∃child.Human, which says that fathers are male
humans that have a human child. However, a statement like “Rich persons usually have rich
children” should not be expressed with a CI since it does not hold for all rich persons. It is more
appropriate to use a probabilistic conditional (PC) of the form (∀child.Rich | Person ⊓ Rich)[𝑝],
where the probability 𝑝 may be based on statistical knowledge or express the degree of a subjec-
tive belief. The CI and PC of our example can be phrased in the probabilistic DL 𝒜ℒ𝒞ME [3, 4, 5],
which extends the well-known DL 𝒜ℒ𝒞 with probabilistic conditionals that are interpreted
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based on the aggregating semantics and the maximum entropy principle. Compared to other
probabilistic extensions of DL (such as [6, 7, 8]), 𝒜ℒ𝒞ME has the advantage that the aggregating
semantics smoothly combines the statistical and the subjective view on probabilities and that the
maximum entropy approach fulfills a number of reasonable commonsense principles [9, 10, 11].
Like other approaches for probabilistic reasoning in a first-order setting, the aggregating seman-
tics assumes that interpretations are built over a fixed finite domain Δ. To be able to deal with
large domain sizes, one needs reasoning to be domain-lifted [12], which means that inferences
can be drawn in time polynomial in the size of Δ. The main results of [4, 3, 5] are that 𝒜ℒ𝒞ME

allows for domain-lifted inference.
In the FLAIRS-38 paper [13], we extend these results from the base logic 𝒜ℒ𝒞 to logics that

can count. Number restrictions [14, 15] are DL concept constructors that can express simple
numerical constraints on the number of role successors of an individual, such as that it has
three children that are rich, and only two that are not rich, whereas cardinality restrictions on
concepts [16, 17] can constrain the overall number of elements of a concept, e.g., expressing
that there are more than 500,000 rich people living in Florida. Description logics offering
such counting features are contained in C2, the two-variable fragment of FOL with counting
quantifiers, and are thus decidable [18, 19]. In [20, 21] it was recently shown that (extended
versions of) model counting in C2 can be realized in a domain-liftable way. We use this result
in [13] to prove that C2ME allows for domain-lifted inference. The DL 𝒜ℒ𝒞𝒮𝒞𝒞 [22] offers
more expressive counting constraints on role successors, which in general cannot be expressed
in C2 or even full FOL [23]. For example, in 𝒜ℒ𝒞𝒮𝒞𝒞 we can describe persons that have more
rich than non-rich children without specifying how many children of each type the person
actually has, and in 𝒜ℒ𝒞𝒮𝒞𝒞ME we can say that, with a high probability (say .8), rich persons
have more rich than non-rich children. We show in [13] that (an extended version of) model
counting in 𝒜ℒ𝒞𝒮𝒞𝒞 can be realized in a domain-liftable way, and use this result to prove that
𝒜ℒ𝒞𝒮𝒞𝒞ME allows for domain-lifted inference.

In the following, we briefly sketch the main results obtained in [13]. More details can be
found in the full paper [13].

2. Concept-Constrained Model Counting

Model counting usually asks how many models over a given finite domain Δ a given sentence
has. In [13], we consider a slightly extended version of this task, called concept-constrained
model counting, where the underlying logic is either C2 or 𝒜ℒ𝒞𝒮𝒞𝒞. Concepts 𝐶 of 𝒜ℒ𝒞𝒮𝒞𝒞
and their extensions 𝐶𝐼 as well as 𝒜ℒ𝒞𝒮𝒞𝒞 TBoxes and their models are defined in [22]. For
the two-variable fragment C2 of FOL with counting quantifiers, concepts 𝐶 are formulas with
one free variable 𝑥, and their extension 𝐶𝐼 consists of those elements of 𝐼 that make the formula
true when substituted for 𝑥. A C2 TBox is a sentence (i.e., formula without free variables) of C2.

Let 𝒯 be a TBox, 𝐶1, . . . , 𝐶𝑛 concepts, 𝑐1, . . . , 𝑐ℓ non-negative integers, and Δ a finite set.
Then

ccmc(𝒯 , 𝐶1, . . . , 𝐶ℓ, 𝑐1, . . . , 𝑐ℓ,Δ)

is defined to be the number of models 𝐼 of 𝒯 with domain Δ that satisfy |𝐶𝐼
𝑖 | = 𝑐𝑖 (1 ≤ 𝑖 ≤ ℓ).

We say that concept-constrained model counting is domain-liftable if this number can be



computed in polynomial time in the size of the input Δ (i.e., where the other inputs of the
function ccmc are assumed to be of constant size).

Theorem 1 ([13]). Concept-constrained model counting in C2 and in 𝒜ℒ𝒞𝒮𝒞𝒞 is domain-liftable.

ForC2, this is an easy consequence of the results on model counting inC2 in [20] (Proposition 4
together with Theorem 4). For 𝒜ℒ𝒞𝒮𝒞𝒞, this is explicitly proved in [13], and constitutes one
of the main results of this paper.

3. The Logics 𝒜ℒ𝒞𝒮𝒞𝒞ME and C2ME

In the following, let ℒ be either 𝒜ℒ𝒞𝒮𝒞𝒞 or C2. In the logic ℒME, we consider probabilistic
conditionals (PCs) of the form (𝐷 |𝐶)[𝑝], where 𝐶,𝐷 are ℒ concepts and 𝑝 is a rational number.
An ℒ knowledge base 𝒦 = (𝒯 , 𝒞) consists of an ℒ TBox 𝒯 together with a finite set 𝒞 of
PCs. To define the semantics of such a knowledge base 𝒦, we follow [3, 4] and consider
interpretations over a fixed, finite domain Δ of the signature of 𝒦. We denote the (finite) set
of all these interpretations with ℐΔ and the set of probability distributions 𝑃 : ℐΔ → [0, 1]
over ℐΔ with PΔ. The distribution 𝑃 ∈ PΔ is a model of 𝒦 = (𝒯 , 𝒞) if all interpretations 𝐼
that are not models of 𝒯 satisfy 𝑃 (𝐼) = 0 and the following holds for all PCs (𝐹𝑖 |𝐸𝑖)[𝑝𝑖] in 𝒞:∑︀

𝐼∈ℐΔ 𝑃 (𝐼) · |𝐸𝐼
𝑖 | > 0 and∑︁

𝐼∈ℐΔ

𝑃 (𝐼) · |𝐸𝐼
𝑖 ∩ 𝐹 𝐼

𝑖 | = 𝑝𝑖 ·
∑︁
𝐼∈ℐΔ

𝑃 (𝐼) · |𝐸𝐼
𝑖 |. (1)

This semantics for PCs is called aggregating semantics [10]. A knowledge base with at least one
model is consistent. Using the fact that concept-constrained model counting for ℒ is domain-
liftable (see Theorem 1), consistency checking for ℒME is shown to be also domain-liftable
in [13].

Theorem 2 ([13]). Consistency of an ℒME knowledge base 𝒦 for a finite domain Δ can be checked
in time polynomial in |Δ|.

Instead of reasoning w.r.t. all models of a consistent knowledge base, we use the maximum
entropy distribution as preferred model. In fact, as pointed out in [3], according to Paris, this
distribution is the most appropriate choice of model in this setting. The entropy of a probability
distribution 𝑃 is −

∑︀
𝐼∈ℐΔ 𝑃 (𝐼) · log2 𝑃 (𝐼), where we use the convention 0 ·∞ = 0. For every

consistent knowledge base 𝒦 = (𝒯 , 𝒞), there is exactly one model of 𝒦 with maximal entropy,
i.e., the optimization problem

−
∑︁
𝐼∈ℐΔ

𝑃 (𝐼) · log2 𝑃 (𝐼)
!
= max with the conditions

∑︁
𝐼∈ℐΔ

𝑃 (𝐼) = 1,
∑︁
𝐼∈ℐΔ

𝑃 (𝐼)|𝐸𝐼 | > 0 for (𝐹 |𝐸)[𝑝] ∈ 𝒞,

∑︁
𝐼∈ℐΔ

𝑃 (𝐼)|𝐸𝐼 ∩ 𝐹 𝐼 | = 𝑝
∑︁
𝐼∈ℐΔ

𝑃 (𝐼)|𝐸𝐼 | for (𝐹 |𝐸)[𝑝] ∈ 𝒞,



∀𝐼 ∈ ℐΔ : 𝑃 (𝐼) ≥ 0 and 𝑃 (𝐼) = 0 if 𝐼 ̸|= 𝒯 ,

has exactly one solution 𝑃ME
𝒦 [10].

Instead of solving this optimization problem directly, one usually considers the dual optimiza-
tion problem, whose solutions represent𝑃ME

𝒦 in a compact way. Assume that 𝒞 = {(𝐹𝑖 |𝐸𝑖)[𝑝𝑖] |
𝑖 = 1, . . . , 𝑛} and define the functions 𝑓𝑖 (1 ≤ 𝑖 ≤ 𝑛) as 𝑓𝑖(𝐼) := |𝐸𝐼

𝑖 ∩ 𝐹 𝐼
𝑖 | − 𝑝𝑖|𝐸𝐼

𝑖 |.
An application of the Lagrange multiplier method to the above optimization problem then
yields 𝑃ME

𝒦 (𝐼) = 0 if 𝐼 ̸|= 𝒯 and 𝑃ME
𝒦 (𝐼) = 𝛼0𝛼

𝑓1(𝐼)
1 · · ·𝛼𝑓𝑛(𝐼)

𝑛 if 𝐼 |= 𝒯 , where the values
𝛼𝑖 > 0 are solutions to the equations

∑︀
𝐼∈ℐΔ,𝐼|=𝒯 𝑓𝑖(𝐼)𝛼

𝑓1(𝐼)
1 · · ·𝛼𝑓𝑛(𝐼)

𝑛 = 0, 𝑖 = 1, . . . , 𝑛, and

𝛼0 =
(︁∑︀

𝐼∈ℐΔ,𝐼|=𝒯 𝛼
𝑓1(𝐼)
1 · · ·𝛼𝑓𝑛(𝐼)

𝑛

)︁−1
is a normalization constant.

Since the numbers 𝛼𝑖 are solutions of a non-linear optimization problem, they can in general
only be approximated (e.g., using Newton’s method). Following [3], we do not investigate this
approximation process here, but assume that a rational approximation 𝛽 ∈ Q𝑛

>0 of the exact
solution 𝛼 = (𝛼1, . . . , 𝛼𝑛) ∈ R𝑛

>0 is given. For such an approximation 𝛽 = (𝛽1, . . . , 𝛽𝑛), the
induced probability distribution 𝑃𝛽

𝒦 on ℐΔ is defined in [3] as

𝑃𝛽
𝒦 (𝐼) =

{︃
𝛽0𝛽

𝑓1(𝐼)
1 · · ·𝛽𝑓𝑛(𝐼)

𝑛 if 𝐼 |= 𝒯 ,

0 else,

where the normalization constant 𝛽0 is defined analogously to 𝛼0.
It is shown in [13] that domain-lifted inference w.r.t. 𝑃𝛽

𝒦 is possible. The main step towards
achieving this result is the following theorem.

Theorem 3. Let 𝐸,𝐹 be ℒ concepts, 𝒦 = (𝒯 , 𝒞) with 𝒞 = {(𝐷𝑖 |𝐶𝑖)[𝑝𝑖] | 1 ≤ 𝑖 ≤ 𝑛}
a consistent ℒ knowledge base where 𝑝𝑖 = 𝑠𝑖/𝑡𝑖 for natural numbers 𝑠𝑖, 𝑡𝑖, and let 𝑃𝛽

𝒦 be an
approximation of the maximum entropy distribution, as defined above. Then we can compute
(in time polynomial in |Δ|) a polynomial 𝑃 (𝑋1, . . . , 𝑋𝑛) in 𝑛 indeterminates and with rational
coefficients such that 𝑝 := 𝑃 ( 𝑡1

√
𝛽1, . . . ,

𝑡𝑛
√
𝛽𝑛) satisfies 𝑃𝛽

𝒦 |= (𝐹 |𝐸)[𝑝].

Employing results from the theory of algebraic field extensions [24, 25], this theorem is used
in [13] to show the following domain-liftability result.

Corollary 1. Let 𝐸,𝐹 be ℒ concepts, 𝑞 ∈ [0, 1] a rational number, 𝒦 = (𝒯 , 𝒞) a consistent ℒ
knowledge base, and 𝑃𝛽

𝒦 a rational approximation of the maximum entropy distribution. Then
𝑃𝛽
𝒦 |= (𝐹 |𝐸)[𝑞] and 𝑃𝛽

𝒦 |= 𝐸 ⊑ 𝐹 can be decided in time polynomial in |Δ|.

As pointed out in [13], it would also be interesting to know, for a given rational number
𝑞, whether 𝑞 is larger or smaller than the probability 𝑝 for which 𝑃𝛽

𝒦 |= (𝐹 |𝐸)[𝑝] holds. At
the point of submitting the final version of [13], we were able to show that this problem is
decidable (see [26]), but it was not clear to us whether deciding the problem can be done in time
polynomial in |Δ|. More recently, we were able to show domain-liftability also for this problem.
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