
Reliable Reference for a DL Knowledge Base under
Data Update
Enamul Haque

1
, David Toman

1
and Grant Weddell

1

1Cheriton School of Computer Science, University of Waterloo, 200 University Ave W., Waterloo, ON N2L 3G1, Canada

Abstract
Earlier work has shown how Russell’s notion of proper definite descriptions can be captured as referring

expressions: concept descriptions that are known to be singular. Concept descriptions are a more general

and transparent way of communicating answers to queries. In general, how long such answers can be

relied on will depend on how long facts about entities are not altered via data update, that is, on revisions

to the underlying ABox of a KB. In this paper, we show how a simple variety of dynamic constraints can

be added to a KB to ensure user specified durations on how long query answers must be able to be relied

on.

Keywords
referring expressions, data update, dynamic constraints

1. Introduction

A knowledge base 𝒦 expressed in terms of a description logic (DL) will consist of a TBox, a

finite set of subsumptions characterizing information relevant to the underlying domain of an

application, and an ABox, a finite set of assertions that introduce specific domain facts. In this

paper, we consider where 𝒦 is expressed in a dialect of the FunDL family of DLs [1] for which

logical consequence of subsumptions and assertions in 𝒦 is computationally tractable. FunDL

dialects are feature logics that replace roles, arbitrary binary relations, with features, arbitrary

partial functions, and include a means of expressing subsumptions that capture a variety of

equality generating dependencies via a concept constructor called a path functional dependency
(PFD).

Examples of a TBox and ABox defining a knowledge base 𝒦 that are expressed in our DL are

given in Figure 1 for a hypothetical university domain about STUDENTs, EMPloyees, BuiLDings,

and so on. Here, room1, "Davis Center" and 5678 are examples of so-called individual names,
with the latter two also called literal values such as strings and integers. The subsumptions

use PFDs (underlined) that will ensure, for example, that no two rooms will have a unique

combination of a room number and the name of the building in which they reside. This ensures

any structure of 𝒦 will have the same interpretation for each of the following two concepts

that employ the nominal concept constructor:

{room1}, and

ROOM ⊓ ∃𝑟𝑛𝑢𝑚.{5678} ⊓ ∃𝑖𝑛.𝑛𝑎𝑚𝑒.{"Davis Center"}. (1)

DL 2025: 38th International Workshop on Description Logics, September 3–6, 2025, Opole, Poland
$ enamul.haque@uwaterloo.ca (E. Haque); david@uwaterloo.ca (D. Toman); gweddell@uwaterloo.ca (G. Weddell)

© 2025 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

mailto:enamul.haque@uwaterloo.ca
mailto:david@uwaterloo.ca
mailto:gweddell@uwaterloo.ca
https://creativecommons.org/licenses/by/4.0
https://ceur-ws.org
https://ceur-ws.org

The second concept is an example of a referring expression as introduced in [2], or, as Russell

would say, a proper definite description.
1

This earlier work introduced the notion of a referring
expression type (𝑅𝑡) for specifying possible referring expressions for individuals. The syntax for

an 𝑅𝑡 was adapted in [4] for specifying concepts intended to serve as more transparent and

readable referring expressions for individuals that are expressed as concepts. Based on this

syntax, an 𝑅𝑡 “generating” this referring expression for room1 in our university domain is as

follows:

ROOM ⊓ ∃𝑟𝑛𝑢𝑚.⟨?⟩ ⊓ ∃𝑖𝑛.𝑛𝑎𝑚𝑒.⟨?⟩
Note that occurrences of “⟨?⟩” serve as placeholders for nominals, and that an 𝑅𝑡 is therefore a

pattern language for concepts.

One might expect that relying on the second referring expression in (1) to faithfully refer to

room1 will always “work”, that room numbers, the buildings in which rooms reside and the

names of buildings are permanent facts that will never change. However, now consider the

following four concepts:

(i) {rob};
(ii) PERSON ⊓ ∃𝑠𝑠𝑛.{1234};
(iii) STUDENT ⊓ ∃𝑠𝑛𝑢𝑚.{321}; and

(iv) EMP ⊓ ∃𝑒𝑛𝑢𝑚.{77}.

(2)

We will see that referring expressions (ii) and (iii) are in the language generated by an 𝑅𝑡 defined

as the following pattern:

(STUDENT ⊓ ∃𝑠𝑛𝑢𝑚.⟨?⟩) ; (PERSON ⊓ ∃𝑠𝑠𝑛.⟨?⟩) (3)

Note that the occurrence of “;” in this 𝑅𝑡 expresses a preference for referring expression (iii) over

referring expression (ii) in (2). Here again, any structure of 𝒦 will have the same interpretation

for each of the concepts. However, in this case, referring to rob via referring expressions (iii) or

(iv) will only work for as long as rob continues to be student and an employee, a circumstance

that might no longer be true in some future update to the ABox.

It is this kind of effect that sensible data update can have on referring expressions that is our

primary concern. In particular, we introduce a form of dynamic constraint that can be added to

𝒦 to ensure the efficacy of a referring expression.

To illustrate, if the facts that rob is a student and that his student number is 321 are implied

by 𝒦, consider where 𝒦 should also ensure that any data update on the ABox in which he

continues to be a student must also preserve knowledge of this number. We augment the above

mentioned FunDL dialect for capturing 𝒦 to incorporate a form of dynamic constraint to ensure

this, in particular, a dynamic constraint of the form

(STUDENT, 𝑠𝑛𝑢𝑚).

The constraint is dynamic in the sense that it fails to hold when also considering any data

update to the ABox in which rob remains a student but in which knowledge of this student

number is either removed or updated.

1

For Russell, such expressions are well-formed formulae free in one variable that hold for exactly one element of a

domain [3].

TBox = { ROOM ⊑ (∃𝑟𝑛𝑢𝑚.⊤) ⊓ (∃𝑖𝑛.BLD) ⊓ ROOM : 𝑟𝑛𝑢𝑚, 𝑖𝑛.𝑛𝑎𝑚𝑒 → id ,
BLD ⊑ (∃𝑛𝑎𝑚𝑒.⊤) ⊓ BLD : 𝑛𝑎𝑚𝑒 → id ,
PERSON ⊑ (∃𝑠𝑠𝑛.⊤) ⊓ (∃𝑙𝑛𝑎𝑚𝑒.⊤) ⊓ PERSON : 𝑠𝑠𝑛 → id ,
STUDENT ⊑ PERSON ⊓ (∃𝑠𝑛𝑢𝑚.⊤) ⊓ STUDENT : 𝑠𝑛𝑢𝑚 → id ,
EMP ⊑ PERSON ⊓ (∃𝑒𝑛𝑢𝑚.⊤) ⊓ (∃𝑙𝑜𝑐.ROOM) ⊓ EMP : 𝑒𝑛𝑢𝑚 → id }

ABox = { ROOM(room1), 𝑟𝑛𝑢𝑚(room1) = 5678, 𝑖𝑛(room1) = bld1,
BLD(bld1), 𝑛𝑎𝑚𝑒(bld1) = "Davis Center",
PERSON(rob), 𝑠𝑠𝑛(rob) = 1234, 𝑙𝑛𝑎𝑚𝑒(rob) = "Smith",
STUDENT(rob), 𝑠𝑛𝑢𝑚(rob) = 321,
PERSON(robin), 𝑠𝑠𝑛(robin) = 1234, 𝑙𝑛𝑎𝑚𝑒(robin) = "Smith",
EMP(robin), 𝑒𝑛𝑢𝑚(robin) = 77, 𝑙𝑜𝑐(robin) = room1 }

Figure 1: University Subsumptions and Assertions.

Our main result introduces the procedure ChooseRE(𝑎,𝐶,𝒦) where 𝑎 is an individual name,

𝐶 a concept expressing a “duration requirement” and 𝒦 a knowledge base that now includes

dynamic constraints, such as the above, and an 𝑅𝑡. The procedure attempts to compute the

most preferred referring expression in the language generated by 𝑅𝑡 for referring to 𝑎 that can

be relied on for as long as 𝑎 is known to be a 𝐶 .

For example, assume the TBox and ABox of 𝒦 are as given in Figure 1, where it

has additional dynamic constraints such as the above, and where it has the 𝑅𝑡 given by

(3). Then ChooseRE(rob,STUDENT,𝒦) would return referring expression (iii) in (2) and

ChooseRE(rob,PERSON,𝒦) would return referring expression (ii). However, if the fact that

Rob’s student number is 321 was not in the ABox, then the first call would also return referring

expression (ii).

To summarize, our contributions revolve around the ChooseRE procedure. In particular, we

introduce a variety of dynamic constraints relating to individuals and their feature values and

incorporate such constraints in the computation of referring expressions for individuals that (a)

are more general and transparent ways of communicating references to individuals, for example,

in answers to queries, and (b) can be trusted to reliably refer for a specified duration.

The remainder of the paper is organized as follows. Section 2 provides the needed background

relating to our FunDL dialect, to referring expressions, and to our new dynamic constraints.

Procedure ChooseRE is then introduced in Section 3. In Section 4, we consider a number of

additional issues relating to “unique name” possibilities, to counting, and to incremental ways

to guarantee the existence of referring expressions. Summary comments are given in a final

subsection.

2. Definitions

We now formally define the artifacts introduced in our introductory comments, beginning

with the definition of concepts and TBoxes for a member of the FunDL family of DLs with

decidable complexity of logical consequence for subsumptions and for assertions. Recall that

Syntax Semantics: Defn of “(·)ℐ”

𝐶 ::=⊥ ∅
| 𝐶 : Pf1, ...,Pf𝑘 → Pf0 {𝑥 | ∀𝑦.((𝑦 ∈ 𝐶ℐ ∧ (

⋀︀𝑘
𝑖=0{𝑥, 𝑦} ⊆ (∃Pf𝑖.⊤)ℐ)

(
⋀︀𝑘

𝑖=1 Pf
ℐ
𝑖 (𝑥) = Pfℐ𝑖 (𝑦))) → (Pfℐ0 (𝑥) = Pfℐ0 (𝑦)))}

| ⊤ △ℐ

| A Aℐ ⊆ △ℐ

| ∃Pf.𝐶 {𝑥 | ∃𝑦.(𝑦 ∈ 𝐶ℐ ∧ Pfℐ(𝑥) = 𝑦)}
| 𝐶1 ⊓ 𝐶2 𝐶ℐ

1 ∩ 𝐶ℐ
2

| {𝑎} {𝑎ℐ}
| ∃𝑓−1.𝐶 {𝑓ℐ(𝑥) | 𝑥 ∈ 𝐶ℐ}

Figure 2: Syntax and semantics of concept descriptions.

members of this family replace roles with partial functions, and that concepts also serve the role

of referring expressions. Also note that we distinguish a countably infinite subset of individual

names that are literal values such as strings or integers and for which we adopt the unique

name assumption.

Definition 1 (FunDL Concepts, Referring Expressions, and TBoxes). Let F, PC, IN, and D
be respective countably infinite sets of feature names {𝑓1, 𝑓2, . . .}, primitive concept names
{A1,A2, . . .}, individual names {𝑎1, 𝑎2, . . .}, and a countably infinite subset of IN that are literal
values. A path expression is defined by the grammar “Pf ::= 𝑓.Pf | id” for 𝑓 ∈ F and a concept

by the grammar on the left-hand-side of Figure 2. Concepts generated by the second production are
called path functional dependencies (PFDs).2

A referring expression (𝑅𝑒) is a concept description parsed by the last six productions in Figure 2;
these are intended to assert the existence of individuals with complex properties.

A subsumption is an expression of the form 𝐶1 ⊑ 𝐶2, where the 𝐶𝑖 are FunDL concepts parsed
by the first six productions in Fig. 2. A terminology (TBox) 𝒯 consists of a finite set of subsumptions.

The semantics of concepts and path expressions is defined with respect to a structure ℐ =
(△ℐ , ·ℐ), where △ℐ is a domain of “individuals” including “literal values”, and where ·ℐ is an
interpretation function that fixes the interpretations of primitive concepts 𝐴 to be subsets of △ℐ

and primitive features 𝑓 to be partial functions 𝑓ℐ : △ℐ → △ℐ . The interpretation function also
satisfies the unique name assumption (UNA) for literal values, that is, that (𝑎1)ℐ ̸= (𝑎2)

ℐ for
any pair of distinct 𝑎1 and 𝑎2 in D. The interpretation is extended in the natural way to path
expressions: idℐ = 𝜆𝑥.𝑥, (𝑓.Pf)ℐ = Pfℐ ∘𝑓ℐ ; and to concept descriptions as indicated on the
right-hand-side of Figure 2.

A structure ℐ satisfies a subsumption 𝐶1 ⊑ 𝐶2 if 𝐶ℐ
1 ⊆ 𝐶ℐ

2 , and is a model of a TBox 𝒯 if
it satisfies all subsumptions in 𝒯 . A subsumption is a logical consequence of a TBox, written
𝒯 |= (𝐶1 ⊑ 𝐶2), when every model of 𝒯 also satisfies 𝐶1 ⊑ 𝐶2.

2

Recall that such concepts are the above-mentioned means of capturing equality generating dependencies.

Given a TBox 𝒯 , a referring expression 𝐶 is singular with respect to 𝒯 if |𝐶ℐ | ≤ 1 for any
model ℐ of 𝒯 . □

Unfortunately, an unrestricted use of the first six concept constructors in Fig. 2 in TBox

subsumptions still leads to undecidability of KB consistency and logical implication questions

[5]. To regain decidability, all PFDs in the TBox must appear on right-hand sides of subsumptions

and must conform to the following forms:

1. C : Pf1, . . . ,Pf .Pf𝑖, . . . ,Pf𝑘 → Pf or

2. C : Pf1, . . . ,Pf .𝑓1, . . . ,Pf𝑘 → Pf .𝑓2

With these restrictions, reasoning tasks become complete for EXPTIME. Further restrictions are

needed to obtain PTIME reasoning algorithms for the above tasks. The most general form of

such restrictions (to date) has been developed in [6].

Referring expression types are now defined. Recall from our introductory comments that

these were first introduced in [2], and that the version presented here is from later work in

[4] which adapts earlier syntax to conform with referring expressions expressed as concepts.

In this version, we have made a minor revision to enable such types to distinguish the case

in which “feature paths” lead more specifically to literal values. The discussion that follows

on how a referring expression type can be diagnosed at “compile time” to determine if all

generated referring expressions are singular w.r.t. a given TBox is also from [4]. This entails

the introduction of a couple of useful auxiliary functions that is used in later sections.

Definition 2 (FunDL Referring Expression Types). A referring expression type (𝑅𝑡) is defined
by the following grammar:3

𝑅𝑡 ::= A | {?} | ⟨?⟩ | ∃Pf.𝑅𝑡 | 𝑅𝑡 ⊓𝑅𝑡 | 𝑅𝑡 ;𝑅𝑡

We define the language of referring expressions inhabiting 𝑅𝑡, ℒ(𝑅𝑡), as follows:

ℒ(A)= {A}
ℒ({?})= {{𝑎} | 𝑎 ∈ IN}
ℒ(⟨?⟩)= {{𝑎} | 𝑎 ∈ D}

ℒ(∃Pf.𝑅𝑡)= {∃Pf.𝐶 | 𝐶 ∈ ℒ(𝑅𝑡)}
ℒ(𝑅𝑡1 ⊓𝑅𝑡2)= {𝐶1 ⊓ 𝐶2 | 𝐶1 ∈ ℒ(𝑅𝑡1) and 𝐶2 ∈ ℒ(𝑅𝑡2)}
ℒ(𝑅𝑡1;𝑅𝑡2))=ℒ(𝑅𝑡1) ∪ ℒ(𝑅𝑡2)

Also, we write Norm(𝑅𝑡) to refer to an exhaustive application of the following rewrite rules to 𝑅𝑡:

𝑅𝑡 ⊓ (𝑅𝑡1;𝑅𝑡2) ↦→ 𝑅𝑡 ⊓𝑅𝑡1;𝑅𝑡 ⊓𝑅𝑡2
(𝑅𝑡1;𝑅𝑡2) ⊓𝑅𝑡 ↦→ 𝑅𝑡1 ⊓𝑅𝑡;𝑅𝑡2 ⊓𝑅𝑡
∃Pf.(𝑅𝑡1;𝑅𝑡2) ↦→ ∃Pf.𝑅𝑡1;∃Pf.𝑅𝑡2

□
3

This is a pattern language obtained by abstracting nominals in referring expressions, and by admitting a final

production to express preference among referring expressions [2]. Also note that such a preference only becomes

an issue when more than one referring expression for an individual is possible in an ABox, in particular, in defining

our ChooseRE procedure in the next section.

The definition of Norm(𝑅𝑡) is a simple variant of referring expression type normalization

defined in [2], and the following are consequences: (1) ℒ(𝑅𝑡) = ℒ(Norm(𝑅𝑡)), and (2) all

preference operators (“;”) are at the top level of Norm(𝑅𝑡). We call the maximal “;”-free parts of

Norm(𝑅𝑡) preference-free components.
Given a TBox 𝒯 and a referring expression type 𝑅𝑡, the following auxiliary functions will

enable a static test for singularity of referring expressions in ℒ(𝑅𝑡):

Con(A)=A
Con({?})=⊤
Con(⟨?⟩)=⊤

Con(∃Pf ′.𝑅𝑡)=∃Pf ′.Con(𝑅𝑡)
Con(𝑅𝑡1 ⊓𝑅𝑡1)=Con(𝑅𝑡1) ⊓ Con(𝑅𝑡2)

Pfs(A)= { }
Pfs({?})= {id}
Pfs(⟨?⟩)= {id}

Pfs(∃Pf ′.𝑅𝑡)= {Pf ′ .Pf | Pf ∈ Pfs(𝑅𝑡)}
Pfs(𝑅𝑡1 ⊓𝑅𝑡1)=Pfs(𝑅𝑡1) ∪ Pfs(𝑅𝑡2)

The functions extract a FunDL concept and a set of path expressions leading to nominals from

a preference-free referring expression type. A straightforward variation of the ideas presented

in [2], Theorem 20, yields the following formulation of the static test:

Theorem 1 (from [4]). Let 𝒯 be a TBox and 𝑅𝑡 a referring expression type. Then all refer-
ring expressions in ℒ(𝑅𝑡) are singular if and only if for every preference-free component 𝑅𝑡′ of
Norm(𝑅𝑡):

𝒯 |= Con(𝑅𝑡′) ⊑ Con(𝑅𝑡′) : Pfs(𝑅𝑡′) → id .

□

The definition of our dynamic constraints now follows and includes a definition of ABoxes and

of data update. Note that a finite set of dynamic constraints and a (single) referring expression

type are now included as part of the definition of a knowledge base and that we have taken a

very general view of what constitutes data update: replacing an ABox with an entirely new

ABox. More discussion will follow.

Definition 3 (FunDL ABoxes, Dynamic Constraints and Data Update). An assertion box (ABox)
𝒜 consists of a finite set of assertions of the form 𝐶(𝑎1), 𝑎1 = 𝑎2, or 𝑓(𝑎1) = 𝑎2, where 𝐶 is a
concept and the 𝑎𝑖 are individual names.

A dynamic constraint has the form (𝐶,Pf), and we write 𝒲 to refer to a WBox, a finite set of
dynamic constraints.

A knowledge base 𝒦 is a four-tuple (𝒯 ,𝒜,𝒲, 𝑅𝑡).
A structure ℐ satisfies 𝒜 when it satisfies each assertion in 𝒜, that is, when (𝑎1)

ℐ ∈ 𝐶ℐ ,
(𝑎1)

ℐ = (𝑎2)
ℐ and 𝑓ℐ((𝑎1)

ℐ) = (𝑎2)
ℐ . 𝒦 = (𝒯 ,𝒜,𝒲, 𝑅𝑡) is consistent if there exists a

structure over 𝒦, that is, that satisfies 𝒯 and 𝒜.
A data update is an ABox 𝒜, and qualifies as an update on 𝒦 = (𝒯 ,𝒜′,𝒲, 𝑅𝑡) if 𝒦 is

consistent, 𝒦′ = (𝒯 ,𝒜,𝒲, 𝑅𝑡), also written 𝒦/𝒜, is also consistent, and if 𝒦 and 𝒜 also satisfy
each dynamic constraint (𝐶,Pf) in 𝒲 , written (𝒦,𝒜) |= (𝐶,Pf). This holds when:

for any ℐ1 over 𝒦, ℐ2 over 𝒦/𝒜 and individuals 𝑎1 and 𝑎2, if (𝑎1)ℐ1 ∈ 𝐶ℐ1 ,
(𝑎1)

ℐ2 ∈ 𝐶ℐ2 and Pfℐ1((𝑎1)
ℐ1) = (𝑎2)

ℐ1 then Pfℐ2((𝑎1)
ℐ2) = (𝑎2)

ℐ2 .
(4)

More generally, we write 𝒦 |= (𝐶,Pf) when (𝒦,𝒜) |= (𝐶,Pf) for any data update 𝒜 on 𝒦. □

Our notion of a data update is based on the notion of a transaction on a relational database

that updates only the contents of tables and is consistency preserving, that is consists of inserts,

updates and deletes on a given collection of tables for which all integrity constraints continue to

hold. Also, in earlier work, we have considered where an 𝑅𝑡 was attached to each free variable

of a query [2] and, more recently, where an 𝑅𝑡 is attached instead to primitive concepts in

the context of a DL-based knowledge base [4]. It turns out in the latter case that a single 𝑅𝑡
obtained by using “;” to “catenate” those attached to some primitive concept, thus establishing a

global preference for how to refer to any object, suffices.

Observe that dynamic constraints cannot disqualify the ABox of a consistent knowledge base

𝒦 from also qualifying as a data update on 𝒦, nor can revising such constraints of a consistent

knowledge base lead to its inconsistency. This leads immediately to the following:

Theorem 2. Let 𝒦 = (𝒯 ,𝒜,𝒲, 𝑅𝑡) be a consistent knowledge base and 𝒞 a subsumption
or assertion. Then 𝒦 |= 𝒞 iff (𝒯 ,𝒜, { }, 𝑅𝑡) |= 𝒞, that is, admitting dynamic constraints in a
knowledge base are a conservative extension w.r.t. logical consequence of subsumptions or assertions.
□

3. Ensuring Durations for Referring Expressions

We now define procedure ChooseRE(𝑎,𝐶,𝒦) for computing more transparent and readable

referring expressions for an individual 𝑎 in knowledge base 𝒦 that can be relied on for duration

𝐶 , that is, for as long as 𝑎 is known to be an instance of concept 𝐶 . The procedure uses the

definition of ToRE given in [4] for computing a referring expression that works “in the here

and now” for a given “;”-free 𝑅𝑡′. In particular, ToRE is called in an iterative fashion on the

sequence of such 𝑅𝑡′ in Norm(𝑅𝑡) until finding a referring expression that also satisfies a

subsumption relating to 𝐶 and 𝑅𝑡′. In addition, durability requires that 𝒦 itself satisfies a

durability condition.

Note that, unlike the case in [4], it is now possible that different referring expressions are

obtained for the same individual name due to alternative choices for 𝐶 , that is, for durations.

Again, more discussion will follow.

Definition 4 (Choosing a Referring Expression). Let 𝑎 be an individual name, 𝐶 a concept and
𝒦 = (𝒯 ,𝒜,𝒲, 𝑅𝑡) a consistent knowledge base, and assume Norm(𝑅𝑡) = 𝑅𝑡1; . . . ;𝑅𝑡𝑘. 𝒦 is
durable when the following holds:

𝒦 |= (Con(𝑅𝑡𝑖),Pf), for 1 ≤ 𝑖 ≤ 𝑘 and all Pf ∈ Pfs(𝑅𝑡𝑖). (5)

We define ToRE(𝑎,𝑅𝑡𝑖,𝒦) to be the result of the following recursive definition of
ToRE(𝑎,𝑅𝑡𝑖, id ,𝒦) on the structure of 𝑅𝑡𝑖:

ToRE(𝑎,A,Pf,𝒦)=A if 𝒦 |= 𝑎 : ∃Pf.A, undefined otherwise;
ToRE(𝑎, {?},Pf,𝒦)= {𝑎′} if 𝒦 |= 𝑎 : ∃Pf.{𝑎′} for some 𝑎′ ∈ IN, undefined otherwise;
ToRE(𝑎, ⟨?⟩,Pf,𝒦)= {𝑎′} if 𝒦 |= 𝑎 : ∃Pf.{𝑎′} for some 𝑎′ ∈ D, undefined otherwise;

ToRE(𝑎,∃Pf ′.𝑅𝑡,Pf,𝒦)=∃Pf ′.ToRE(𝑎,𝑅𝑡,Pf .Pf ′,𝒦); and
ToRE(𝑎,𝑅𝑡1 ⊓𝑅𝑡2,Pf,𝒦)=ToRE(𝑎,𝑅𝑡1,Pf,𝒦) ⊓ ToRE(𝑎,𝑅𝑡2,Pf,𝒦) if both are defined,

undefined otherwise.

We write ChooseRE(𝑎,𝐶,𝒦) to return a concept 𝐶 ′ for the least 𝑖 ≤ 𝑘 for which the following
hold, and to be undefined otherwise:

1. 𝒦 |= 𝐶 ⊑ Con(𝑅𝑡𝑖),
2. ToRE(𝑎,𝑅𝑡𝑖, id ,𝒦) is defined and returns 𝐶 ′. □

See earlier work [7, 8] for more effective ways of computing the second and third cases of

ToRE by appealing to logical consequence in FunDL knowledge bases based on a binary search

that assumes access to a total ordering of individual names IN. This earlier work also shows

how standard classification can be employed to compute the first case of ToRE.

WBox = { (ROOM, 𝑟𝑛𝑢𝑚), (ROOM, 𝑖𝑛), (BLD, 𝑛𝑎𝑚𝑒),
(PERSON, 𝑠𝑠𝑛), (STUDENT, 𝑠𝑛𝑢𝑚), (EMP, 𝑒𝑛𝑢𝑚) }

𝑅𝑡 = ROOM ⊓ ∃𝑟𝑛𝑢𝑚.⟨?⟩ ⊓ ∃𝑖𝑛.𝑛𝑎𝑚𝑒.⟨?⟩ ;
BLD ⊓ ∃𝑛𝑎𝑚𝑒.⟨?⟩ ;
STUDENT ⊓ ∃𝑠𝑛𝑢𝑚.⟨?⟩ ; EMP ⊓ ∃𝑒𝑛𝑢𝑚.⟨?⟩ ; PERSON ⊓ ∃𝑠𝑠𝑛.⟨?⟩

Figure 3: University Dynamic Constraints and Referring Expression Type.

Building on our university domain, consider where the TBox and ABox for 𝒦 are as given

in Figure 1. Also assume the dynamic constraints and referring expression type for 𝒦 are as

given in Figure 3. Observe that the 𝑛𝑎𝑚𝑒 of a person and the 𝑙𝑜𝑐ation of an employee office are

really the only kinds of facts that can updated. Then the following lists examples of calls to

ChooseRE and the referring expression returned as a consequence:

ChooseRE(rob, STUDENT,𝒦) → STUDENT ⊓ ∃𝑠𝑛𝑢𝑚.{321}
ChooseRE(rob,PERSON,𝒦) → PERSON ⊓ ∃𝑠𝑠𝑛.{1234}
ChooseRE(room1,ROOM,𝒦) → ROOM ⊓ ∃𝑟𝑛𝑢𝑚.{5678} ⊓ ∃𝑖𝑛.𝑛𝑎𝑚𝑒.{"Davis Center"}
ChooseRE(rob,EMP ⊓ ∃𝑙𝑜𝑐.𝑖𝑛.𝑛𝑎𝑚𝑒.{"David Center"},𝒦) → EMP ⊓ ∃𝑒𝑛𝑢𝑚.{77}

Note that the first three are as reported in our introductory comments. The fourth shows

another referring expression for rob that is requested to last for as long as he is an employee

with an office located in the David Center building.

Theorem 3. Let 𝑎 be an individual name, 𝐶1 a concept and 𝒦 = (𝒯 ,𝒜,𝒲, 𝑅𝑡) a consistent
knowledge base that is durable and for which all referring expressions in ℒ(𝑅𝑡) are singular w.r.t.
𝒯 . If ChooseRE(𝑎,𝐶1,𝒦) is defined and returns concept 𝐶2, then 𝐶ℐ1

2 = 𝐶ℐ2
2 = {(𝑎)ℐ1} for any

ℐ1 over 𝒦, any data update 𝒜′ on 𝒦 and any ℐ2 over 𝒦/𝒜′.

Proof. (sketch) By induction on the structure of the concept𝐶2 generated byToRE(𝑎,𝑅𝑡𝑖, id ,𝒦)
for some 𝑅𝑡𝑖. The invariant of the structural induction is {Pf .Pf ′ | Pf ′ ∈ Pfs(𝑅𝑡)} ⊆ Pfs(𝑅𝑡𝑖)
where𝑅𝑡 andPf are the second and third arguments of the recursive calls toToRE in Definition 4.

Then in the first base case 𝒦 |= 𝑎 : ∃Pf.A holds as Con(𝑅𝑡𝑖) ⊑ ∃Pf.A and in the second and

third case we have Pf ∈ Pfs(𝑅𝑡𝑖) and thus, due to the requirement 𝒦 |= (Con(𝑅𝑡𝑖),Pf) for all

Pf ∈ Pfs(𝑅𝑡𝑖) and condition (4), we get Pf reaches the same constant 𝑎′ starting from 𝑎 in ℐ2
as it reached in ℐ1 (when constructing 𝐶2 using ToRE).

Recall that logical consequence for subsumptions is decidable. Thus, by Theorem 2, the only

outstanding computational issue with ChooseRE(𝑎,𝐶1,𝒦) concerns logical consequence for

dynamic constraints, that is, to determine if 𝒦 |= (𝐶,Pf) for some 𝒦, 𝐶 and Pf . To this end,

we define two inference axioms:

𝒦 |= (𝐶1,Pf), 𝒦 |= 𝐶2 ⊑ 𝐶1

𝒦 |= (𝐶2,Pf)
(6)

𝒦 |= (𝐶1,Pf1), 𝒦 |= 𝐶1 ⊑ ∃Pf1.𝐶2, 𝒦 |= (𝐶2,Pf2)

𝒦 |= (𝐶1,Pf1 .Pf2)
(7)

A sound procedure to decide if 𝒦 = (𝒯 ,𝒜,𝒲, 𝑅𝑡) |= (𝐶,Pf) based on these axioms can

operate by first checking if 𝐶 is not satisfiable or if Pf is id and returning true if this is the case.

If 𝐶 is satisfiable and Pf is not id , the procedure can then proceed in an iterative manner on

the sequence of feature names occurring in Pf . In particular, if Pf has the form 𝑓.Pf ′, check if

there exists a 𝐶1 and 𝐶2 where (𝐶1, 𝑓) ∈ 𝒲 , 𝒦 |= 𝐶 ⊑ 𝐶1 and 𝒦 |= 𝐶1 ⊑ ∃𝑓.𝐶2, and then

recurse on deciding if 𝒦 |= (𝐶2,Pf
′) if Pf ′ is not id .

4. Discussion

4.1. On UNA and Counting

As with individual names that are not literal values for which the UNA applies, referring

expressions can in principle co-refer to the same object in a structure for a given 𝒦. This was

indeed the case in our introductory example (2):

{rob} PERSON ⊓ ∃𝑠𝑠𝑛.{1234} STUDENT ⊓ ∃𝑠𝑛𝑢𝑚.{321} EMP ⊓ ∃𝑒𝑛𝑢𝑚.{77}

On the other hand, literal values (elements of D) will be distinct since we have assumed the

UNA for literal values. Hence, referring expressions in ℒ(⟨?⟩) will inherit this property. In the

following we show how the UNA can be lifted to more complex referring expression types.

In this way we ensure that referring expressions that inhabit these types also obey this lifted

variant of UNA: syntactically distinct referring expressions must always refer to distinct domain

elements. The following condition on referring expression types lifts UNA to more complex

referring expression types:

• Let Norm(𝑅𝑡) = 𝑅𝑡1; . . . ;𝑅𝑡𝑘 be “{?}”-free referring expression type such that 𝒦 |=
Con(𝑅𝑡𝑖) ⊓ Con(𝑅𝑡𝑗) ⊑ ⊥ for all 𝑖 < 𝑗 ≤ 𝑘. Then ℒ(𝑅𝑡) obeys lifted UNA.

Note that, e.g., stronger lower bounds for counting are enabled by detecting lifted UNA.

4.2. On Guaranteeing the Existence of Referring Expressions

The procedure for choosing a referring expression in Definition 4 may fail to return an appro-

priate referring expression. We focus on the situation in which the reason for failure is entirely

due to where ToRE(𝑎,𝑅𝑡𝑖,𝒦) is not defined, i.e., where 𝒦 does not entail sufficiently many

facts about the individual 𝑎 in question.

One can strengthen definition (4) of the semantics of a dynamic constraint (𝐶,Pf) to ensure,

whenever 𝒦 |= 𝐶(𝑎) become true, ToRE(𝑎,𝑅𝑡𝑖,𝒦) will then succeed and produces a referring

expression in ℒ(𝑅𝑡𝑖) that refers to 𝑎 with the duration 𝐶 . This additional requirement for

(𝐶,Pf) is as follows:

for any ℐ1 over 𝒦, ℐ2 over 𝒦/𝒜 and individual 𝑎1, if (𝑎1)
ℐ1 ̸∈ 𝐶ℐ1

and

(𝑎1)
ℐ2 ∈ 𝐶ℐ2

then there is 𝑎2 such that Pfℐ2((𝑎1)
ℐ2) = (𝑎2)

ℐ2
.

(8)

Note that we still require 𝒦 to be durable, in particular that the following holds:

𝒦 |= (Con(𝑅𝑡𝑖),Pf), for 1 ≤ 𝑖 ≤ 𝑘 and all Pf ∈ Pfs(𝑅𝑡𝑖),

and that these now satisfy both conditions (4) and (8). In addition, we need to require that for

Pf ∈ LitPfs(𝑅𝑡𝑖) the constant 𝑎2 in (8) is in D (i.e., the path ends in a literal as prescribed by

𝑅𝑡𝑖). The auxiliary function LitPfs is defined as follows:

LitPfs(A)= { }
LitPfs({?})= { }
LitPfs(⟨?⟩)= {id}

LitPfs(∃Pf ′.𝑅𝑡)= {Pf ′ .Pf | Pf ∈ LitPfs(𝑅𝑡)}
LitPfs(𝑅𝑡1 ⊓𝑅𝑡1)= LitPfs(𝑅𝑡1) ∪ LitPfs(𝑅𝑡2)

With this stronger requirement, ToRE(𝑎,𝑅𝑡𝑖,𝒦) always returns an appropriate referring ex-

pression for any 𝑎 that will persist as long as 𝐶(𝑎) holds. Hence, evolving 𝒦 via data updates

starting from an empty ABox guarantees the existence of referring expressions for any individual

for which such an expression can exist.

4.3. Summary Comments

We have developed dynamic constraints—constraints on allowed ABox changes—that make

referring expressions durable relative to concept membership of the objects they identify. This

way we can guarantee that, e.g., the value of the feature snum can be used to identify PERSONs as

long as they are STUDENTs, but ceases to be reliable when a PERSON ceases to be a STUDENT

(and we have to revert to other ways of identifying such objects). This durability of referring

expressions relative to concept membership has many applications, for example, when one

considers physical representation of such objects in multi-level storage systems (such as caches).

We also introduced conditions under which the existence of appropriate referring expressions

is guaranteed for all objects belonging to a given concept description. Last, we studied how

UNA for constant symbols can be lifted to complex referring expressions.

References

[1] S. McIntyre, D. Toman, G. E. Weddell, FunDL - A family of feature-based description

logics, with applications in querying structured data sources, in: Description Logic, Theory

Combination, and All That - Essays Dedicated to Franz Baader on the Occasion of His 60th

Birthday, 2019, pp. 404–430.

[2] A. Borgida, D. Toman, G. Weddell, On referring expressions in query answering over first

order knowledge bases, in: Proc. Principles of Knowledge Representation and Reasoning,

KR 2016, 2016, pp. 319–328.

[3] B. Russell, On denoting, Mind 14 (1905) 479–493. URL: http://www.jstor.org/stable/2248381.

[4] A. Borgida, E. Franconi, D. Toman, G. E. Weddell, Understanding document data sources

using ontologies with referring expressions, in: AI 2022: Advances in Artificial Intelligence,

volume 13728 of LNCS, Springer, 2022, pp. 367–380.

[5] D. Toman, G. E. Weddell, On Keys and Functional Dependencies as First-Class Citizens in

Description Logics, J. Aut. Reasoning 40 (2008) 117–132.

[6] S. McIntyre, A. Borgida, D. Toman, G. E. Weddell, On limited conjunctions and partial

features in parameter-tractable feature logics, in: The Thirty-Third AAAI Conference on

Artificial Intelligence, AAAI 2019, 2019, pp. 2995–3002.

[7] J. Pound, D. Toman, G. E. Weddell, J. Wu, Query algebra and query optimization for concept

assertion retrieval, in: V. Haarslev, D. Toman, G. E. Weddell (Eds.), Proceedings of the 23rd

International Workshop on Description Logics (DL 2010), volume 573 of CEUR Workshop
Proceedings, 2010.

[8] J. Pound, D. Toman, G. E. Weddell, J. Wu, An assertion retrieval algebra for object queries

over knowledge bases, in: T. Walsh (Ed.), IJCAI 2011, Proceedings of the 22nd International

Joint Conference on Artificial Intelligence, 2011, IJCAI/AAAI, 2011, pp. 1051–1056.

http://www.jstor.org/stable/2248381

	1 Introduction
	2 Definitions
	3 Ensuring Durations for Referring Expressions
	4 Discussion
	4.1 On UNA and Counting
	4.2 On Guaranteeing the Existence of Referring Expressions
	4.3 Summary Comments

