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1. Introduction

This extended abstract summarizes results from [1], where we propose a practical method

for learning axioms in a Description Logic (DL) ontology using techniques from probably

approximately correct (x) learning. The goal is to support ontology-mediated query answering

(OMQA) [2, 3] by approximating an unknown TBox 𝒯 through interaction with a domain expert
oracle that can decide whether a concept inclusion (CI) 𝐶 ⊑ 𝐷 is entailed by 𝒯 . Such an oracle

may be instantiated in different ways—for example, as a human domain expert; a large language

model (LLM); a dataset representative of the domain; or a large, complex ontology from which

a smaller, focused one is to be distilled.

Our method learns subsumption relationships among a finite set 𝒞 of concept descriptions,

called the base set. This base set constrains the search space of candidate axioms and can be

chosen to suit the application—e.g., all concept names, combinations of concept names with

existential restrictions up to a fixed role depth, or a tailored selection relevant to the user. We do

not fix a particular DL or a set of constructors; our results apply to arbitrary DLs that support

conjunction.

The algorithm also employs a sampling oracle that generates CIs over 𝒞 according to a fixed

but arbitrary distribution 𝒟. Given 𝜖, 𝛿 ∈ (0, 1), it runs in time polynomial in the relevant

parameters and returns a TBox 𝒯 ′
such that, with probability at least 1− 𝛿 (over the algorithm’s

random choices), the probability (under 𝒟) that a CI over 𝒞 is entailed by exactly one of 𝒯 and

𝒯 ′
is at most 𝜖.

We also show how to bias the learning process toward subsumptions that are particularly

relevant to a given ABox 𝒜, by adapting the distribution 𝒟. This enablesx the learned axioms

to improve recall in query answering over incomplete datasets. Experimental evaluation on

benchmark ontologies confirms the effectiveness of our approach.

For related work on ontology learning in DLs, see [4, 5, 6, 7, 8, 9, 10, 11, 12].
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2. PAC Learning of Concept Inclusions

Let 𝒯 be a TBox, 𝒞 be a base set of concept descriptions over its signature, and 𝒟 be a probability

distribution on CIs of the form

d
𝒳 ⊑ 𝐷, where 𝒳 ⊆ 𝒞 and 𝐷 ∈ 𝒞. For 0 < 𝜖 < 1, we say that

a set 𝒯 ′
of such CIs is an 𝜖-𝒞-approximation of 𝒯 if

Pr
𝒟

(︀
𝑞 | (𝒯 |= 𝑞) ⇐⇒ (𝒯 ′ ̸|= 𝑞)

)︀
≤ 𝜖,

where 𝑞 is such a CI. 𝒯 ′
is called a lower 𝜖-𝒞-approximation if 𝒯 |= 𝒯 ′

.

We base our solution on an algorithm for exactly learning propositional Horn formulas

[13], which requires two types of queries: membership and equivalence queries. We simulate

membership queries using subsumption queries. We modify the equivalence oracle so that,

instead of returning a model of exactly one of the two non-equivalent Horn formulas, it returns

the GCI corresponding to an Horn clause that is entailed by exactly one of the two formulas. A

probably approximately correct algorithm is obtained by replacing each call to this equivalence

oracle with an appropriate number of calls to a suitable sampling oracle. Please see [1] for more

details.

3. Varying the Query Distribution

Our definition of approximation involves a distribution 𝒟 of subsumption queries. This distri-

bution is meant to reflect the interests of the user of the ontology we are trying to learn. In a

basic scenario, we may assume that users explicitly pose subsumption queries to the ontology

and that 𝒟 is the distribution of these queries.

A more practically relevant scenario is given by ontology-mediated query answering [2, 3]:

Given a query (a concept description) 𝑞 and a knowledge base 𝒦 = (𝒯 ,𝒜), find all instances of

𝑞 in 𝒦. The TBox 𝒯 may be only partially known or not known at all, in which case we may

use our PAC algorithm to learn its approximation through interaction with an expert or from a

representative dataset. In this setting, an approximation may be considered good if it ensures

high precision and recall of query answering.

Definition 1. Let 𝒦 = (𝒯 ,𝒜) be a knowledge base, 𝒯 ′ be a TBox, and 𝑞 be a query. Using certain-
answer semantics [2], we define cert(𝑞,𝒦) as the set of individual names 𝑎 from 𝒜 satisfying
𝒦 |= 𝑞(𝑎). The precision and recall of 𝒯 ′ for 𝑞 on 𝒦 are, respectively,

P𝑞(𝒯 ′,𝒦) =
| cert(𝑞, (𝒯 ′,𝒜)) ∩ cert(𝑞,𝒦)|

| cert(𝑞, (𝒯 ′,𝒜))|
,R𝑞(𝒯 ′,𝒦) =

| cert(𝑞, (𝒯 ′,𝒜)) ∩ cert(𝑞,𝒦)|
| cert(𝑞,𝒦)|

.

If the denominator is 0, then the value of the corresponding measure is defined to be 1.

There are two standard ways to aggregate precision and recall for several queries: macroav-

eraging and microaveraging [14].

Definition 2. Let 𝒦 = (𝒯 ,𝒜) be a knowledge base, 𝒯 ′ be a TBox, and 𝑄 be a finite set of queries.
The macro precision and recall of 𝒯 ′ for 𝑄 on 𝒦 are the average values of the precision and recall



over all queries from 𝑄:

P𝑄
macro(𝒯 ′,𝒦) =

∑︀
𝑞∈𝑄 P𝑞(𝒯 ′,𝒦)

|𝑄|
and R𝑄

macro(𝒯 ′,𝒦) =

∑︀
𝑞∈𝑄R𝑞(𝒯 ′,𝒦)

|𝑄|
.

The micro precision P𝑄
micro(𝒯 ′,𝒦) and micro recall R𝑄

micro(𝒯 ′,𝒦) are defined, respectively, as∑︀
𝑞∈𝑄 | cert(𝑞, (𝒯 ,𝒜)) ∩ cert(𝑞, (𝒯 ′,𝒜))|∑︀

𝑞∈𝑄 | cert(𝑞, (𝒯 ′,𝒜))|
and

∑︀
𝑞∈𝑄 | cert(𝑞, (𝒯 ,𝒜)) ∩ cert(𝑞, (𝒯 ′,𝒜))|∑︀

𝑞∈𝑄 | cert(𝑞, (𝒯 ,𝒜))|
.

The goal in our OMQA scenario is to learn an approximation 𝒯 ′
of 𝒯 with high values of the

macro/micro precision and recall for some set 𝑄 of queries. If 𝒯 ′
is a lower approximation of

𝒯 , then the precision for every query is 1, and so are the macro and micro precision. In this

case, we aim to maximize the recall. Next we describe a heuristic approach to choosing the

distribution of subsumption queries in the learning algorithm so as to increase the micro recall

on a given ABox 𝒜.

Consider a subsumption query

d
𝒳 ⊑ 𝐷. If we care about micro recall, it seems particularly

important to ask this query whenever

d
𝒳 has a lot of instances in 𝒦0 = (∅,𝒜), since a

positive answer to the query would then allow us to correctly assert𝐷(𝑥) for many individuals 𝑥.

Therefore, a reasonable approach seems to be to generate the left-hand sides

d
𝒳 of subsumption

queries proportionally to | cert(
d
𝒳 ,𝒦0)|. Regarding the right-hand sides, if 𝐷(𝑥) rarely occurs

in 𝒜, this may be due to two reasons: 𝐷 is a rare concept, or 𝐷 is a generalization of other

concepts and 𝐷(𝑥) can be inferred from the target TBox 𝒯 together with what is explicitly

asserted in 𝒜 about 𝑥. We cannot tell which of the two it is; so we may want to assume the

second case to be on the safe side. Then, we may want to generate the right-hand sides 𝐷
of subsumption queries with probabilities proportional to | Ind(𝒜) ∖ cert(𝐷,𝒦0)|, i.e., to the

number of individuals that are not (yet) known to be instances of 𝐷.

A problem with this approach is that 𝐵 ⊑ 𝐶 cannot be learned if 𝐵 has no instances in 𝒦0.

To address this, we need to change the distribution on the fly, so as to take into account what has

already been learned. Thus, having learned 𝐴 ⊑ 𝐵, we update 𝒦0 by replacing 𝒯0 = ∅ with

𝒯1 = {𝐴 ⊑ 𝐵} and recalculate the probabilities involved in sampling premises with respect to

𝒦1 = (𝒯1,𝒜). Now, | cert(𝐵,𝒦1)| > 0, which makes it possible to learn 𝐵 ⊑ 𝐶 .

This was the method used in the experiments we presented in [1]. However, it prioritizes

concepts

d
𝒳 with a large number of instances in 𝒜 even when these instances are the same for

many different 𝒳 . This may sometimes negatively affect precision or recall for certain concepts

in 𝒞. Instead, when sampling left-hand sides of CIs, we should try to maximize the coverage

of individuals in 𝒜. Therefore, in the experiments presented here, we adopt the following

two-stage approach: first sample an individual 𝑎 from 𝒜 uniformly at random and then sample

a subset of {𝐶 ∈ 𝒞 | 𝑎 ∈ cert(𝐶,𝒦𝑖)} also uniformly at random.

4. Experimental Evaluation

We implemented our approach in a prototype tool, paclo
1
, and evaluated it in the OMQA context.

The expert was simulated using the target TBox 𝒯 ; i.e., the response to a subsumption query 𝑞

1

https://github.com/sertkaya/paclo

https://github.com/sertkaya/paclo


Table 1
𝜖 and lower 𝜖-approximations for the ore_ont_5596 ontology

𝜖 𝜖-approximation lower 𝜖-approximation
𝒜-induced uniform 𝒜-induced

Macro 𝑃/𝑅 Micro 𝑃/𝑅 |𝒯 ′| Macro/Micro 𝑅 |𝒯 ′| Macro/Micro 𝑅 |𝒯 ′|
𝒞1 – 1.0 / 0.57 1.0 / 0.10 0

0.1 1.0 / 0.75 1.0 / 0.70 7.4 0.71 / 0.62 24.4 0.75/0.70 6.6
0.01 0.99 / 0.98 0.99 / 0.99 24.8 0.78 / 0.69 30.6 0.97/0.98 21.2

0.005 1.0 / 0.98 1.0 / 0.99 26 0.76 / 0.71 33 0.98/0.99 25.8
𝒞2 – 1.0 / 0.73 1.0 / 0.36 0

0.1 0.98 / 0.84 0.97 / 0.83 7.4 0.85 / 0.80 28.4 0.82/0.80 6.2
0.01 0.99 / 0.98 0.99 / 0.99 30.8 0.85 / 0.81 38 0.97 / 0.98 29.4

0.005 0.99 / 0.99 0.99 / 0.99 37.8 0.87 / 0.84 41 0.99 / 0.99 34.8

is positive if and only if 𝒯 |= 𝑞. Subsumption queries were answered with the ELK reasoner

[15]. We set 𝛿 = 0.001 to ensure a high probability of obtaining the desired approximation and

averaged results over five runs. Each setting is defined by a signature, an approximation type

(𝜖- or lower 𝜖-approximation), and a query distribution 𝒟 (uniform or 𝒜-induced, as described

in the previous section).

We tested on six KBs: four generated with OWL2Bench [16] and two from the ORE 2015

repository [17]. Due to space constraints, we report results here only for the KB ore_ont_5596;

results for the other KBs can be found in [1]. The ore_ont_5596 KB contains 58 class names, 33

role names, 322 GCIs, 112,320 individuals, 32,990 class assertions and 190,149 role assertions.

Two base sets were considered: 𝒞1 with all class names and 𝒞2 that adds ∃𝑟.⊤ for each role 𝑟,

yielding 93 concepts in total. We measure the macro and micro recall on the query set 𝑄 = 𝒞𝑖.
The results are shown in Table 1.

For each of 𝒞1 and 𝒞2, the first line represents the precision and recall of the empty 𝒯 ′
, i.e.,

the quality of query answering based only on the ABox. This serves our baseline. We omit

𝜖-approximations with the uniform distribution, since it provides hardly any improvement over

the baseline. The best macro and micro recall values for each 𝜖 are shown in bold. The column

|𝒯 ′| contains the number of axioms learned.

Overall, 𝒜-induced distributions yield substantially higher recall, particularly for micro

recall.Lower approximations typically have slightly reduced recall, but may be preferable when

perfect precision is required. Lower approximations for the uniform distribution do show some

improvement over the baseline, but usually smaller than those for the 𝒜-induced distribution

and with larger sets of GCIs. Note that the perfect recall may not be achievable with a fixed

base set 𝒞, since 𝒯 may contain axioms mixing concepts from and outside 𝒞.
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