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Abstract
We propose a method for generating evaluation datasets for ABox abduction algorithms, using diverse
real-world knowledge bases, logical consequences as observations to ensure meaningfulness, justifications
to guarantee explanations exist, and ontology modules to constrain the search space.
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1. Introduction

Abduction [1, 2] is a form of inference that explains an observation by identifying its possible
causes (explanations). We focus specifically on ABox abduction, where both the observation and
its explanations consist of ABox assertions. To enable meaningful comparison and evaluation
of ABox abduction algorithms, a suitable dataset of ABox abduction problems is needed. Such a
dataset should include multiple real-world knowledge bases, each with meaningful observations.
For each observation, it should provide abducibles (a set representing the search space) of
varying sizes. Additionally, the ABox abduction problems should vary in the number and length
of explanations. Datasets in existing evaluations suffer from several limitations, including
use of only one knowledge base [3]; artificial automatically generated observations [3, 4, 5];
observations that may have no explanations [4]; limited diversity in explanation length and
number [3]; and weak constraints on the search space [6, 7, 3, 4, 5]. Building on prior approaches,
we have begun constructing an evaluation dataset that addresses these shortcomings.

2. Construction of a Robust Evaluation Dataset

To generate meaningful, non-artificial observations and reduce the search space without losing
explanations, we propose two methods: one for generating observations (applicable to any
knowledge base) and another for generating abducibles (applicable to any ABox abduction
problem). For simplicity, the methods are defined for atomic concept assertions but extend easily
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to all atomic assertions and their complements. Applying these methods to diverse real-world
knowledge bases enables the construction of a robust evaluation dataset.

Real-World Knowledge Bases: Koopmann et al. [4] proposed to use the 2015 OWL Reasoner
Competition Corpus1[8], providing 1,920 diverse real-world ontologies, as a suitable set of
knowledge bases for the evaluation of abduction algorithms. To focus only on relevant ontologies
with the potential to produce interesting problems, we defined the following requirements:
consistency; consistency check time ≤ 30 seconds; individual count ≥ 1. After applying these
requirements, we obtained 865 ontologies as candidate knowledge bases.

Consequences as Observations: Although many knowledge bases are available, we are
not aware of real-world use cases with predefined observations; therefore, observations must
be generated separately. We aim to generate meaningful observations 𝒪 by selecting logical
consequences of a knowledge base 𝒦. To ensure explanatoriness (𝒦 ̸|= 𝒪), each 𝒦 must be
modified to no longer entail observation 𝒪. This is done by removing at least one assertion
from each justification of 𝒪, i.e., from a minimal set of axioms responsible for the entailment of
𝒪 [9]. Our approach is described in Algorithm 1.

The core idea is to “corrupt” 𝒦 by removing assertions that can later be recovered as explana-
tions through ABox abduction. As ABox abduction yields only ABox assertions, other axiom
types cannot be removed during the modification of 𝒦.

Algorithm 1 Generating ABox Abduction Problems
Input: knowledge base 𝒦
Output: a set of ABox abduction problems 𝒫𝑠

1: 𝒫𝑠 ← {}
2: 𝑐𝑜𝑛𝑐𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝑠← {𝐴(𝑖) | 𝑖 ∈ 𝑁𝐼 , 𝐴 ∈ 𝑁𝐶 ,𝒦 |= 𝐴(𝑖), 𝐴(𝑖) /∈ 𝒦} ◁ generate observations
3: for 𝐴(𝑖) in 𝑐𝑜𝑛𝑐𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝑠 do ◁ compute observation justifications
4: 𝐽(𝐴(𝑖))← get the ABox parts of justifications for 𝐴(𝑖) using OWLExplanation
5: end for
6: for 𝐴(𝑖) in 𝑐𝑜𝑛𝑐𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝑠 do ◁ generate ABox abduction problems
7: 𝑛← get the size of the largest justification in 𝐽(𝐴(𝑖))
8: for 𝑥 in ⟨1, 𝑛⟩ do
9: 𝒦𝑥 ←𝒦

10: for 𝑗𝑢𝑠𝑡 in 𝐽(𝐴(𝑖)) do
11: 𝑡𝑜𝐷𝑒𝑙𝑒𝑡𝑒← randomly select 𝑚𝑖𝑛(𝑥, |𝑗𝑢𝑠𝑡|) assertions from 𝑗𝑢𝑠𝑡
12: 𝒦𝑥 ←𝒦𝑥 ∖ 𝑡𝑜𝐷𝑒𝑙𝑒𝑡𝑒 ◁ modify 𝒦
13: end for
14: 𝒫𝑠 ← 𝒫𝑠 ∪ {𝒫 = (𝒦𝑥, 𝐴(𝑖))}
15: end for
16: end for
17: return 𝒫𝑠

To explore a wider range of possibilities, we generated multiple modified knowledge bases
for each observation by progressively removing more assertions, aiming to produce different
explanations for the same observation.

Module-Based Abducibles: During evaluation, it is useful to examine how algorithms
perform with search spaces of varying sizes. However, reducing the search space requires a
1https://zenodo.org/record/18578#.Y3tygXbMJPb
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careful strategy to preserve explanations.
We propose using module extraction [10, 11], a technique that extracts a meaningful fragment

of an ontology while preserving all axioms relevant to the complete meaning of a given signature.
This technique can be used to generate module abducibles, i.e., assertions relevant to an obser-
vation 𝒪, excluding symbols unlikely to appear in explanations: Abdmodule = {𝐴(𝑖) | 𝑖 ∈ 𝑁𝐼 ,
𝐴 ∈ 𝑁𝐶 from Σ(𝑚𝑜𝑑𝑢𝑙𝑒)}. Specifically, the ⊤-module, which includes all subclasses of the
atomic classes in the signature of 𝒪, as explanations typically involve concepts subsumed by
the concept in 𝒪.

To differentiate within Abdmodule when generating abducibles of a given size, we prioritise
assertions involving individuals from 𝒪, as they are more likely to appear in explanations.

3. Analysis of Generated Inputs

Generating ABox Abduction Problems: The observation generation process applied to
865 knowledge bases resulted in 37,042 ABox abduction problems. The largest ABox part
of a justification contained 12 assertions, and the maximum number of justifications for an
observation was 38 (all with a single-assertion ABox part). Over 90% of observations had one
justification with a single-element ABox part.

In theory, more justifications should lead to more explanations, and justifications with more
assertions should lead to longer explanations. In practice, justifications may contain complex
assertions that cannot be reconstructed by algorithms limited to atomic assertions and their
complements. Additionally, observations may have explanations beyond those found in the
justifications. Therefore, given the large number of generated problems, identifying those with
interesting properties is challenging without additional information.

Generating Abducibles: To analyse abducible generation, we selected a sample of ABox
abduction problems (Table 1) by applying MergeXplain (MXP)2 [13] with Abddefault = {𝐴(𝑖) |
𝐴 ∈ 𝑁𝐶 , 𝑖 ∈ 𝑁𝐼 from Σ(𝒦 ∪𝒪)} to a random subset of the generated problems. MergeXplain
returns a set of explanations, 𝑆ℰ , containing all explanations of length 1 and, if present, at
least one additional explanation of a greater length. We selected the final sample based on the
number and length of explanations. Notably, only one problem (ont934_obs01) in the subset
produced explanations of varying lengths, including some longer than one.

For each problem in the sample, we generated module abducibles, Abd𝑚𝑜𝑑𝑢𝑙𝑒, which on
average reduced the search space to 46%. Abd𝑚𝑜𝑑𝑢𝑙𝑒 consistently included all explanations
found by MergeXplain, ensuring none were lost.

To generate abducibles of varying sizes, three methods were applied: (a) module abducibles
prioritising assertions with individuals from the observation (our proposed approach), (b) mod-
ule abducibles without prioritisation, and (c) completely random selection. Each method was
used to generate abducibles of sizes 10, 25, 50, 100, 250, and 500, and was run three times
per size to obtain averaged results. For each method and size, we report the percentage of
explanation assertions covered by the generated Abd sets, relative to their size, computed as
|expl. assertions in Abd|

min(|Abd|,|expl. assertions|) (e.g., a set of size 10 can cover at most 10 explanation assertions, and

2MXP was run using CATS [12]: https://github.com/Comenius-Abduction-Team/CATS-Abduction-Solver
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Table 1
ABox Abduction Problem Test Sample

ABox abd. problems |Abddefault| |Abdmodule| |𝑆ℰ | (length 𝑛 : |{ℰ | ℰ ∈ 𝑆ℰ , |ℰ| = 𝑛}|)

ont155_obs46 31,078 6,396 58 (1:58)
ont155_obs167 31,078 20,090 192 (1:192)
ont394_obs27 3,760 2,544 90 (1:90)
ont568_obs61 40,132 8,509 17 (1:17)
ont934_obs01 16,023 15 876 4 (1:1), (3:2), (4:1)
ont1117_obs45 599,844 36 5 (1:5)

Table 2
Explanation Coverage for Different Abducibles Generation Methods

Generation |Abd|
method 10 25 50 100 250 500

(a) 55% 58% 67% 79% 88% 88%
(b) 4% 12% 18% 18% 20% 23%
(c) 1% 1% 0% 1% 2% 4%

the maximum possible coverage is bounded by the total number of explanation assertions). The
results (Table 2) were averaged over all problems and runs. Method (a) was the most successful,
consistently generating sets that covered the highest number of explanation assertions across
all sizes. At sizes 250 and 500, it achieved full coverage for all problems except ont934_obs01,
where it generated no more than two explanation assertions per Abd set. Still, even on this
problem, it outperformed the other methods, which on average generated none. Out of 108
runs, the generated set contained no explanation assertions in 5 cases for method (a) (all for
ont934_obs01), 57 for method (b), and 78 for method (c).

4. Discussion and Outlook

The dataset generation process needs refinement, especially in producing ABox abduction
problems. To narrow down the generated problems and focus on the most relevant ones,
we plan to analyse the ABox parts of justifications. Since many observations produce only
single-assertion explanations, we aim to use observations composed of multiple assertions.

In contrast, for generating abducibles, the module-based approach prioritising individuals
from the observation seems promising.
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