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Abstract
In this paper we present three results concerning the unification problem in the description logicℱℒ⊥.
The logicℱℒ⊥ is a sub-Boolean logic that supports only conjunction, value restrictions, and the top and
bottom constructors, without any form of negation. Subsumption inℱℒ⊥ can be decided in polynomial
time. Although we do not solve the unification problem itself, we establish three related findings. First,
we show that unification inℱℒ⊥ is of type nullary, a result inspired by a similar theorem for the modal
logic K. Second, we reduce the unification problem inℱℒ⊥ to the unification problem inℱℒ0, equipped
with a forward TBox. Third, we revisit the known result that the matching problem in ℱℒ⊥ can be
solved in polynomial time and provide a new algorithm for it.
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1. Introduction

In this paper, we focus on a small description logic,ℱℒ⊥, which extends the constructors of its
sister logic ℱℒ0 by adding the bottom concept. We present three results: the unification type
of ℱℒ⊥ is nullary, inspired by a similar result for the modal logic 𝐾 (see [1]); the unification
problem inℱℒ⊥ can be reduced to the one inℱℒ0 with a special TBox, corresponding to [2];
and we present a simple-to-implement algorithm which solves the matching problem inℱℒ⊥
in polynomial time.

2. The description logics ℱℒ0 and ℱℒ⊥
All notions in this chapter are introduced forℱℒ⊥. To obtain their equivalents inℱℒ0, simply
omit ⊥. In the description logicℱℒ⊥, (complex) concepts are generated from two disjoint sets
𝑁𝐶 and 𝑁𝑅, reffered to as concept names and role names, by the following grammar:
𝐶 ∶∶= ⊤ ∣ ⊥ ∣ 𝐴 ∣ 𝐶 ⊓ 𝐶 ∣ ∀𝑟 .𝐶, where 𝐴 ∈ 𝑁𝐶 , 𝑟 ∈ 𝑁𝑅.
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An interpretation of concepts inℱℒ⊥ is a pair 𝐼 = (Δ𝐼 , ⋅𝐼 ), where Δ𝐼 is a non-empty domain
of elements and ⋅𝐼 is an interpreting function defined on concept names and role names as
follow: ⊤𝐼 = Δ𝐼 ; ⊥𝐼 = ∅; 𝐴𝐼 ⊆ Δ𝐼 , for any 𝐴 ∈ 𝑁𝐶 ; 𝑟 𝐼 ⊆ Δ𝐼 × Δ𝐼 , for any 𝑟 ∈ 𝑁𝑅, and extended
to all complex concepts in the usual way: (𝐶 ⊓ 𝐷)𝐼 = 𝐶 𝐼 ∩ 𝐷𝐼 ; (∀𝑟 .𝐶)𝐼 = {𝑑 ∈ Δ𝐼 ∣ ∀𝑒 ∈
Δ𝐼 [(𝑑, 𝑒) ∈ 𝑟 𝐼 → 𝑒 ∈ 𝐶 𝐼 ]}; (∀𝑣 .𝐶)𝐼 = (∀𝑟1∀𝑟2 …∀𝑟𝑛.𝐶)𝐼 where 𝑣 = 𝑟1 … 𝑟𝑛 ∈ 𝑁𝑅+.

A concept may be reduced with the following reductions to an equivalent concept (inter-
preted by the same set in any interpretation): 𝐶 ⊓ ⊤, ⊤ ⊓ 𝐶 ⇝ 𝐶; 𝐶 ⊓ ⊥, ⊥ ⊓ 𝐶 ⇝ ⊥; ∀𝑟.⊤ ⇝ ⊤;
∀𝑟.(𝐶 ⊓ 𝐷) ⇝ ∀𝑟.𝐶 ⊓ ∀𝑟.𝐷. We call a concept 𝐶 reduced iff none of the reduction rules applies.
For convenience, we will use the notation ∀𝑣.𝛼 for the concept of the form:

∀𝑟1(∀𝑟2(… (∀𝑟𝑛.𝛼))), where 𝑣 = 𝑟1 … 𝑟𝑛 and 𝛼 is either ⊤ or ⊥ or a concept name 𝐴. A con-
cept of this form is called a particle. The word 𝑣 over 𝑁𝑅 is called the role word of the particle
∀𝑣.𝛼 . For role words 𝑣 , 𝑣 ′, by 𝑣 ≤ 𝑣 ′ we denote that 𝑣 is a prefix of 𝑣 ′.
It is easy to see that any concept is equivalent to a conjunction of particles, 𝐶 = ∀𝑣1.𝛼1 ⊓

⋯ ⊓ ∀𝑣𝑛.𝛼𝑛, where 𝑣1, … , 𝑣𝑛 are possibly empty words over 𝑁𝑅. In fact because of properties of
conjunction, we identify a reduced concept with a set of particles in such a conjunction.
Let 𝐶 be an ℱℒ⊥-reduced concept. We define 𝑟𝑑(𝐶) (role depth) and 𝑠𝑖𝑧𝑒(𝐶) (size) recur-

sively: if 𝐶 = 𝐴 or 𝐶 = ⊤ or 𝐶 = ⊥, then 𝑟𝑑(𝐶) = 𝑠𝑖𝑧𝑒(𝐶) = 0; if 𝐶 = 𝐶 ⊓ 𝐷, then
𝑟𝑑(𝐶) = 𝑚𝑎𝑥({𝑟𝑑(𝐶), 𝑟𝑑(𝐷)}) and 𝑠𝑖𝑧𝑒(𝐶) = 𝑠𝑖𝑧𝑒(𝐶) + 𝑠𝑖𝑧𝑒(𝐷); if 𝐶 = ∀𝑟.𝐶′, 𝑟𝑑(𝐶) = 𝑟𝑑(𝐶′) + 1
and 𝑠𝑖𝑧𝑒(𝐶) = 𝑠𝑖𝑧𝑒(𝐶′) + 1.

Subsumption between concepts 𝐶 ⊑ 𝐷 obtains iff for all interpretations 𝐼 , 𝐶 𝐼 ⊆ 𝐷𝐼 . Equiva-
lence: 𝐶 ≡ 𝐷 iff 𝐶 ⊑ 𝐷 and 𝐷 ⊑ 𝐶. For any concept 𝐶, we have ⊥ ⊑ 𝐶 and 𝐶 ⊑ ⊤. Inℱℒ⊥, let 𝐶
and 𝐷 = {𝑃1, … , 𝑃𝑛} be reduced concepts. Then 𝐶 ⊑ 𝐷 iif for every 𝑃 ∈ 𝐷, one of the following
holds: (1) 𝑃 ∈ 𝐶 , (2) 𝑃 = ∀𝑣.𝛼 , where 𝛼 is a concept name or ⊥, and there exists ∀𝑣 ′.⊥ ∈ 𝐶 such
that 𝑣 ′ ≤ 𝑣 .

3. Unification problem in ℱℒ⊥
In order to define a unification problem, we partition the set of concept names 𝑁𝐶 into two
disjoint sets: variables (𝑉 𝑎𝑟 ) and constants (𝐶𝑜𝑛𝑠). A variable is thus a concept name that may
be substituted by any concept while a constant cannot be substituted.
A substitution is a mapping from 𝑉 𝑎𝑟 to the set of all ℱℒ⊥-concepts. It is extended to all

concepts in the usual way. The unification problem (unification problem) is defined by its input
Γ = {𝐶1 ⊑? 𝐷1, … , 𝐶𝑛 ⊑? 𝐷𝑛}; and the output is “yes” if there is a substitution that makes these
subsumptions true, or “no” otherwise. Without loss of generality, we can assume that𝐷1, … , 𝐷𝑛
are particles. A substitution 𝜎 is a unifier for the unification problem Γ = {𝐶1 ⊑? 𝑃1, … , 𝐶𝑛 ⊑? 𝑃𝑛}
iff 𝜎(𝐶1) ⊑ 𝜎(𝑃1), … , 𝜎(𝐶𝑛) ⊑ 𝜎(𝑃𝑛). In this case, we say that the problem is unifiable.

Let Γ be an unification problem with the set of variables 𝑉 and unifiers 𝜎, 𝛾 . We say that
𝜎 is more general than 𝛾 (or 𝛾 is less general than 𝜎 ), if there is a substitution 𝜏 such that
𝛾 (𝑋) ≡ 𝜏(𝜎(𝑋)), for all 𝑋 ∈ 𝑉 . If a unifier is more general than any other unifier, we call it a
most general unifier (an mgu) of Γ.

A set Π of unifiers of a given unification problem Γ is called a complete set of unifiers if
every unifier of Γ is less general than some element of Π. For a given unification problem Γ
we define four unification types (from ”best” to ”worst”) based on the existence and cardinality
of its complete set. The problem has unification type: unitary if there exists complete set of



unifiers consisting of one unifier 𝜎; finitary if it has finite compete set of unifiers, but has no
most general unifier; infinitary if it has an infinite minimal complete set of unifiers; nullary (or
zero) if it has no minimal complete set of unifiers. The unification type of a logic (ℱℒ⊥ in our
case) is the worst unification type of its unifiable problems.

4. Type nullary result

In this section, we sketch a prove that ℱℒ⊥ has nullary unification type by showing that the
unification problem Γ = {𝑋 ⊑? ∀𝑟.𝑋 } has no minimal complete set of unifiers. To this end, we
introduce the set 𝑈 of substitutions consisting of:
𝜎0(𝑋) = ⊥; 𝜎𝑛(𝑋) = 𝑋 ⊓ ∀𝑟.𝑋 ⊓ … ⊓ ∀𝑟𝑛−1.𝑋 ⊓ ∀𝑟𝑛.⊥, for 𝑛 ≥ 1; 𝜎⊤(𝑋) = ⊤.
One can easily check that 𝜎𝛼 (𝑋) ⊑ 𝜎𝛼 (∀𝑟 .𝑋), for each 𝛼 ∈ ℕ ∪ {⊤}.

It can also be shown that the set 𝑈 is complete for Γ. Let 𝜎 be a unifier for Γ not equal to 𝜎⊤
and let 𝜎𝑛 ∈ 𝑈 where 𝑛 = 𝑟𝑑(𝜎(𝑋)). Then 𝜎(𝑋) ≡ 𝜎(𝜎𝑛(𝑋)).

At this point we know that 𝑈 is a complete set of unifiers of Γ. To complete the argument,
we observe that there is no minimal complete set of unifiers for Γ. It can be easily shown that:
𝜎𝑛+1 is more general that 𝜎𝑛, but 𝜎𝑛 is not more general than 𝜎𝑛+1, for each 𝑛 ≥ 0. Using a proof
by contradiction we obtain the result:

Theorem 1. The type of the unification problem Γ is nullary.

5. Reduction from ℱℒ⊥ to ℱℒ0 with a TBox

A ℱℒ0 TBox (TBox for short) is a finite set of ℱℒ0-subsumptions. A model of a TBox 𝒯 is
an interpretation 𝐼 such that 𝐸𝐼 ⊆ 𝐹 𝐼 for all 𝐸 ⊑ 𝐹 ∈ 𝒯 . Let 𝐶 and 𝐷 be concepts. We say
that 𝐶 is subsumed by 𝐷 w.r.t. a TBox 𝒯 (written 𝐶 ⊑𝒯 𝐷) if 𝐶 𝐼 ⊆ 𝐷𝐼 for each model 𝐼 of 𝒯 .
We say that 𝜎 is a unifier of a unification problem Γ w.r.t. a TBox 𝒯 if 𝜎(𝐶) ⊑𝒯 𝜎(𝐷) for each
𝐶 ⊑ 𝐷 ∈ Γ.
Let 𝐶 be anℱℒ⊥ concept, and 𝐵 be a constant, that does not appear in 𝐶.By 𝐶𝐵 we denote the

ℱℒ0-concept obtained from 𝐶 by replacing all occurrences of ⊥ with the constant 𝐵. For 𝑠 =
𝐶 ⊑ 𝐷, 𝑠𝐵 = 𝐶𝐵 ⊑ 𝐷𝐵. Given a finite set Γ of ℱℒ⊥-subsumptions, we define the corresponding
set Γ𝐵 ofℱℒ0-subsumptions by Γ𝐵 = {𝑠𝐵 ∣ 𝑠 ∈ Γ}. For a given finite set of subsumptions Γ, 𝑁𝐶 (Γ)
is the set of all concept names occuring in Γ, 𝑁𝑅(Γ) is the set of all role names occuring in Γ. For
a given signature Σ =< 𝑆𝐶 , 𝑆𝑅 >,where 𝑆𝐶 is a finite subset of 𝑁𝐶 and 𝑆𝑅 is a finite subset of 𝑁𝑅,
we define the following TBox: 𝒯 Σ𝐵 = {𝐵 ⊑ 𝐴 ∣ for every 𝐴 ∈ 𝑆𝐶 }∪{𝐵 ⊑ ∀𝑟.𝐵 ∣ for every 𝑟 ∈ 𝑆𝑅}.
To simplify notation, we henceforth denote 𝒯 <𝑁𝐶 ({𝑠}),𝑁𝑅({𝑠})>𝐵 as 𝒯 𝑠𝐵 , and express
< 𝑁𝐶(Γ), 𝑁𝑅(Γ) > as Σ(Γ).

The following theorem is similar to Lemma 2.2 in [2], which considers subsumptions be-
tween concept names:

Theorem 2. An ℱℒ⊥-subsumption 𝑠 of the form 𝐶 ⊑ 𝐷 obtains iff 𝐶𝐵 ⊑𝒯 𝑠𝐵 𝐷𝐵.
If 𝜎 is a unifier of anℱℒ⊥ unification problem Γ of the minimal size where size of 𝜎 is sum of

{𝑠𝑖𝑧𝑒(𝜎(𝑋)) where 𝑋 is in domain of 𝜎}, then the signature of 𝜎 is contained in Σ(Γ). Therefore:



Theorem 3. Let Γ be a unification problem in ℱℒ⊥. Then Γ has an ℱℒ⊥-unifier iff Γ𝐵 has an
ℱℒ0-unifier w.r.t. the TBox 𝒯 Σ(Γ)

𝐵 .
We showed that the unification problem in ℱℒ⊥ can be reduced to a unification problem
in ℱℒ0 with a TBox. This does not give us a solution for the unification in ℱℒ⊥, since
unification in ℱℒ0 with a TBox is not solved. However, it show that the unification problem
in ℱℒ0 with a TBox is more difficult than unification in ℱℒ⊥.

6. Matching in ℱℒ⊥ is polynomial

The matching problem is a special kind of a unification problem 𝐶 ≡? 𝐷, where 𝐶 contains
no variables. In [3], it was shown that, with respect to general TBoxes, matching is ExpTime-
complete in ℱℒ0, whereas for a restricted form of TBoxes, namely forward TBoxes, the com-
plexity drops to PSpace. We can transfer this result to ℱℒ⊥ via Theorem 3, obtaining that
matching inℱℒ⊥ is in PSpace. In [4] (see Theorem 3.8) it was shown that matching inℱℒ⊥ is
polynomial. Here, we present another simple-to-implement algorithm which solves the match-
ing problem in ℱℒ⊥ in polynomial time.

Algorithm 1 Matching
Input: 𝐶 ≡? 𝐷,where 𝐶 does not contain variables, 𝐷 = 𝐸⊓∀𝑣1.𝑋1⊓⋯⊓∀𝑣𝑛 .𝑋𝑛 , where 𝐸 does not contain variables,
𝑋1, … , 𝑋𝑛 are (not necessarily different) variables, and 𝑣1, … , 𝑣𝑛 are words over 𝑁𝑅.
Output: True if there is a matcher, False otherwise.
1: procedureMatching(𝐶 ≡? 𝐷)
2: if 𝐶 ⋢ 𝐸 then
3: return False
4: else
5: for all ∀𝑣.𝐴 ∈ 𝐶 such that ∀𝑣.𝐴 ∉ 𝐸 and there is no ∀𝑣 ′.⊥ ∈ 𝐸 where 𝑣 ′ ≤ 𝑣 do
6: Find ∀𝑣𝑖.𝑋𝑖 such that 𝑣𝑖 ≤ 𝑣 (𝑣𝑖 is a prefix of 𝑣 )
7: if no ∀𝑣𝑖.𝑋𝑖 is found then
8: return False
9: return True

One can see that the algorithm must terminate in time polynomial in the size of the problem.
In order to justify the correctness of Algorithm 1 we define a special substitution 𝜎̂ . For every
𝑋 occurring in 𝐷, 𝜎̂ (𝑋 ) ∶= ⨅{∀𝑢.𝛼 ∣ ∀𝑣 .𝑋 ∈ 𝐷 and ∀𝑣𝑢.𝛼 ∈ 𝐶 where 𝛼 is a constant or ⊥}.
Next we prove that a matching problem 𝐶 ≡? 𝐷 has a unifier iff the substitution 𝜎̂ is a unifier.
The correctness follows from the fact that the algorithm computes the substitution 𝜎̂ .

7. Conclusions

We have presented three results related to the unification problem in ℱℒ⊥. The unification
type ofℱℒ⊥ turns out to be nullary. Hence,ℱℒ⊥ has the same type as the description logics
ℰℒ , ℱℒ0, and 𝒜ℒ𝒞 . The second result, reduction of the unification problem in ℱℒ⊥
to unification in ℱℒ0 modulo a TBox 𝒯 Σ𝐵 implies that the unification problem in ℱℒ⊥ is
easier than the one in ℱℒ0 with a TBox. It is even easier than the unification in ℱℒ0 with a
forward TBox. As the third result, we have presented a simple algorithm that solves matching
in polynomial time.
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