
Around unification in ℱℒ⊥– three related problems
(Extended Abstract)
Barbara Morawska1, Sławomir Kost1

1Institute of Computer Science, University of Opole, Poland

Abstract
In this paper we present three results concerning the unification problem in the description logicℱℒ⊥.
The logicℱℒ⊥ is a sub-Boolean logic that supports only conjunction, value restrictions, and the top and
bottom constructors, without any form of negation. Subsumption inℱℒ⊥ can be decided in polynomial
time. Although we do not solve the unification problem itself, we establish three related findings. First,
we show that unification inℱℒ⊥ is of type nullary, a result inspired by a similar theorem for the modal
logic K. Second, we reduce the unification problem inℱℒ⊥ to the unification problem inℱℒ0, equipped
with a forward TBox. Third, we revisit the known result that the matching problem in ℱℒ⊥ can be
solved in polynomial time and provide a new algorithm for it.

Keywords
description logic, unification type

1. Introduction

In this paper, we focus on a small description logic,ℱℒ⊥, which extends the constructors of its
sister logic ℱℒ0 by adding the bottom concept. We present three results: the unification type
of ℱℒ⊥ is nullary, inspired by a similar result for the modal logic 𝐾 (see [1]); the unification
problem inℱℒ⊥ can be reduced to the one inℱℒ0 with a special TBox, corresponding to [2];
and we present a simple-to-implement algorithm which solves the matching problem inℱℒ⊥
in polynomial time.

2. The description logics ℱℒ0 and ℱℒ⊥
All notions in this chapter are introduced forℱℒ⊥. To obtain their equivalents inℱℒ0, simply
omit ⊥. In the description logicℱℒ⊥, (complex) concepts are generated from two disjoint sets
𝑁𝐶 and 𝑁𝑅, reffered to as concept names and role names, by the following grammar:
𝐶 ∶∶= ⊤ ∣ ⊥ ∣ 𝐴 ∣ 𝐶 ⊓ 𝐶 ∣ ∀𝑟 .𝐶, where 𝐴 ∈ 𝑁𝐶 , 𝑟 ∈ 𝑁𝑅.

This research is part of the project No 2022/47/P/ST6/03196 within the POLONEZ BIS programme
co-funded by the National Science Centre and the European Union’s Horizon 2020 research and
innovation programme under the Marie Skłodowska-Curie grant agreement No. 945339. For the
purpose of Open Access, the author has applied a CC-BY public copyright licence to any Author
Accepted Manuscript (AAM) version arising from this submission.

DL 2025: 38th International Workshop on Description Logics, September 3–6, 2025, Opole, Poland
barbara.morawska@uni.opole.pl (B. Morawska); skost@uni.opole.pl (S. Kost)
0000-0003-4724-7206 (B. Morawska); 0000-0003-1898-9489 (S. Kost)

© 2025 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

mailto:barbara.morawska@uni.opole.pl
mailto:skost@uni.opole.pl
https://orcid.org/0000-0003-4724-7206
https://orcid.org/0000-0003-1898-9489
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org


An interpretation of concepts inℱℒ⊥ is a pair 𝐼 = (Δ𝐼 , ⋅𝐼 ), where Δ𝐼 is a non-empty domain
of elements and ⋅𝐼 is an interpreting function defined on concept names and role names as
follow: ⊤𝐼 = Δ𝐼 ; ⊥𝐼 = ∅; 𝐴𝐼 ⊆ Δ𝐼 , for any 𝐴 ∈ 𝑁𝐶 ; 𝑟 𝐼 ⊆ Δ𝐼 × Δ𝐼 , for any 𝑟 ∈ 𝑁𝑅, and extended
to all complex concepts in the usual way: (𝐶 ⊓ 𝐷)𝐼 = 𝐶 𝐼 ∩ 𝐷𝐼 ; (∀𝑟 .𝐶)𝐼 = {𝑑 ∈ Δ𝐼 ∣ ∀𝑒 ∈
Δ𝐼 [(𝑑, 𝑒) ∈ 𝑟 𝐼 → 𝑒 ∈ 𝐶 𝐼 ]}; (∀𝑣 .𝐶)𝐼 = (∀𝑟1∀𝑟2 …∀𝑟𝑛.𝐶)𝐼 where 𝑣 = 𝑟1 … 𝑟𝑛 ∈ 𝑁𝑅+.

A concept may be reduced with the following reductions to an equivalent concept (inter-
preted by the same set in any interpretation): 𝐶 ⊓ ⊤, ⊤ ⊓ 𝐶 ⇝ 𝐶; 𝐶 ⊓ ⊥, ⊥ ⊓ 𝐶 ⇝ ⊥; ∀𝑟.⊤ ⇝ ⊤;
∀𝑟.(𝐶 ⊓ 𝐷) ⇝ ∀𝑟.𝐶 ⊓ ∀𝑟.𝐷. We call a concept 𝐶 reduced iff none of the reduction rules applies.
For convenience, we will use the notation ∀𝑣.𝛼 for the concept of the form:

∀𝑟1(∀𝑟2(… (∀𝑟𝑛.𝛼))), where 𝑣 = 𝑟1 … 𝑟𝑛 and 𝛼 is either ⊤ or ⊥ or a concept name 𝐴. A con-
cept of this form is called a particle. The word 𝑣 over 𝑁𝑅 is called the role word of the particle
∀𝑣.𝛼 . For role words 𝑣 , 𝑣 ′, by 𝑣 ≤ 𝑣 ′ we denote that 𝑣 is a prefix of 𝑣 ′.
It is easy to see that any concept is equivalent to a conjunction of particles, 𝐶 = ∀𝑣1.𝛼1 ⊓

⋯ ⊓ ∀𝑣𝑛.𝛼𝑛, where 𝑣1, … , 𝑣𝑛 are possibly empty words over 𝑁𝑅. In fact because of properties of
conjunction, we identify a reduced concept with a set of particles in such a conjunction.
Let 𝐶 be an ℱℒ⊥-reduced concept. We define 𝑟𝑑(𝐶) (role depth) and 𝑠𝑖𝑧𝑒(𝐶) (size) recur-

sively: if 𝐶 = 𝐴 or 𝐶 = ⊤ or 𝐶 = ⊥, then 𝑟𝑑(𝐶) = 𝑠𝑖𝑧𝑒(𝐶) = 0; if 𝐶 = 𝐶 ⊓ 𝐷, then
𝑟𝑑(𝐶) = 𝑚𝑎𝑥({𝑟𝑑(𝐶), 𝑟𝑑(𝐷)}) and 𝑠𝑖𝑧𝑒(𝐶) = 𝑠𝑖𝑧𝑒(𝐶) + 𝑠𝑖𝑧𝑒(𝐷); if 𝐶 = ∀𝑟.𝐶′, 𝑟𝑑(𝐶) = 𝑟𝑑(𝐶′) + 1
and 𝑠𝑖𝑧𝑒(𝐶) = 𝑠𝑖𝑧𝑒(𝐶′) + 1.

Subsumption between concepts 𝐶 ⊑ 𝐷 obtains iff for all interpretations 𝐼 , 𝐶 𝐼 ⊆ 𝐷𝐼 . Equiva-
lence: 𝐶 ≡ 𝐷 iff 𝐶 ⊑ 𝐷 and 𝐷 ⊑ 𝐶. For any concept 𝐶, we have ⊥ ⊑ 𝐶 and 𝐶 ⊑ ⊤. Inℱℒ⊥, let 𝐶
and 𝐷 = {𝑃1, … , 𝑃𝑛} be reduced concepts. Then 𝐶 ⊑ 𝐷 iif for every 𝑃 ∈ 𝐷, one of the following
holds: (1) 𝑃 ∈ 𝐶 , (2) 𝑃 = ∀𝑣.𝛼 , where 𝛼 is a concept name or ⊥, and there exists ∀𝑣 ′.⊥ ∈ 𝐶 such
that 𝑣 ′ ≤ 𝑣 .

3. Unification problem in ℱℒ⊥
In order to define a unification problem, we partition the set of concept names 𝑁𝐶 into two
disjoint sets: variables (𝑉 𝑎𝑟 ) and constants (𝐶𝑜𝑛𝑠). A variable is thus a concept name that may
be substituted by any concept while a constant cannot be substituted.
A substitution is a mapping from 𝑉 𝑎𝑟 to the set of all ℱℒ⊥-concepts. It is extended to all

concepts in the usual way. The unification problem (unification problem) is defined by its input
Γ = {𝐶1 ⊑? 𝐷1, … , 𝐶𝑛 ⊑? 𝐷𝑛}; and the output is “yes” if there is a substitution that makes these
subsumptions true, or “no” otherwise. Without loss of generality, we can assume that𝐷1, … , 𝐷𝑛
are particles. A substitution 𝜎 is a unifier for the unification problem Γ = {𝐶1 ⊑? 𝑃1, … , 𝐶𝑛 ⊑? 𝑃𝑛}
iff 𝜎(𝐶1) ⊑ 𝜎(𝑃1), … , 𝜎(𝐶𝑛) ⊑ 𝜎(𝑃𝑛). In this case, we say that the problem is unifiable.

Let Γ be an unification problem with the set of variables 𝑉 and unifiers 𝜎, 𝛾 . We say that
𝜎 is more general than 𝛾 (or 𝛾 is less general than 𝜎 ), if there is a substitution 𝜏 such that
𝛾 (𝑋) ≡ 𝜏(𝜎(𝑋)), for all 𝑋 ∈ 𝑉 . If a unifier is more general than any other unifier, we call it a
most general unifier (an mgu) of Γ.

A set Π of unifiers of a given unification problem Γ is called a complete set of unifiers if
every unifier of Γ is less general than some element of Π. For a given unification problem Γ
we define four unification types (from ”best” to ”worst”) based on the existence and cardinality
of its complete set. The problem has unification type: unitary if there exists complete set of



unifiers consisting of one unifier 𝜎; finitary if it has finite compete set of unifiers, but has no
most general unifier; infinitary if it has an infinite minimal complete set of unifiers; nullary (or
zero) if it has no minimal complete set of unifiers. The unification type of a logic (ℱℒ⊥ in our
case) is the worst unification type of its unifiable problems.

4. Type nullary result

In this section, we sketch a prove that ℱℒ⊥ has nullary unification type by showing that the
unification problem Γ = {𝑋 ⊑? ∀𝑟.𝑋 } has no minimal complete set of unifiers. To this end, we
introduce the set 𝑈 of substitutions consisting of:
𝜎0(𝑋) = ⊥; 𝜎𝑛(𝑋) = 𝑋 ⊓ ∀𝑟.𝑋 ⊓ … ⊓ ∀𝑟𝑛−1.𝑋 ⊓ ∀𝑟𝑛.⊥, for 𝑛 ≥ 1; 𝜎⊤(𝑋) = ⊤.
One can easily check that 𝜎𝛼 (𝑋) ⊑ 𝜎𝛼 (∀𝑟 .𝑋), for each 𝛼 ∈ ℕ ∪ {⊤}.

It can also be shown that the set 𝑈 is complete for Γ. Let 𝜎 be a unifier for Γ not equal to 𝜎⊤
and let 𝜎𝑛 ∈ 𝑈 where 𝑛 = 𝑟𝑑(𝜎(𝑋)). Then 𝜎(𝑋) ≡ 𝜎(𝜎𝑛(𝑋)).

At this point we know that 𝑈 is a complete set of unifiers of Γ. To complete the argument,
we observe that there is no minimal complete set of unifiers for Γ. It can be easily shown that:
𝜎𝑛+1 is more general that 𝜎𝑛, but 𝜎𝑛 is not more general than 𝜎𝑛+1, for each 𝑛 ≥ 0. Using a proof
by contradiction we obtain the result:

Theorem 1. The type of the unification problem Γ is nullary.

5. Reduction from ℱℒ⊥ to ℱℒ0 with a TBox

A ℱℒ0 TBox (TBox for short) is a finite set of ℱℒ0-subsumptions. A model of a TBox 𝒯 is
an interpretation 𝐼 such that 𝐸𝐼 ⊆ 𝐹 𝐼 for all 𝐸 ⊑ 𝐹 ∈ 𝒯 . Let 𝐶 and 𝐷 be concepts. We say
that 𝐶 is subsumed by 𝐷 w.r.t. a TBox 𝒯 (written 𝐶 ⊑𝒯 𝐷) if 𝐶 𝐼 ⊆ 𝐷𝐼 for each model 𝐼 of 𝒯 .
We say that 𝜎 is a unifier of a unification problem Γ w.r.t. a TBox 𝒯 if 𝜎(𝐶) ⊑𝒯 𝜎(𝐷) for each
𝐶 ⊑ 𝐷 ∈ Γ.
Let 𝐶 be anℱℒ⊥ concept, and 𝐵 be a constant, that does not appear in 𝐶.By 𝐶𝐵 we denote the

ℱℒ0-concept obtained from 𝐶 by replacing all occurrences of ⊥ with the constant 𝐵. For 𝑠 =
𝐶 ⊑ 𝐷, 𝑠𝐵 = 𝐶𝐵 ⊑ 𝐷𝐵. Given a finite set Γ of ℱℒ⊥-subsumptions, we define the corresponding
set Γ𝐵 ofℱℒ0-subsumptions by Γ𝐵 = {𝑠𝐵 ∣ 𝑠 ∈ Γ}. For a given finite set of subsumptions Γ, 𝑁𝐶 (Γ)
is the set of all concept names occuring in Γ, 𝑁𝑅(Γ) is the set of all role names occuring in Γ. For
a given signature Σ =< 𝑆𝐶 , 𝑆𝑅 >,where 𝑆𝐶 is a finite subset of 𝑁𝐶 and 𝑆𝑅 is a finite subset of 𝑁𝑅,
we define the following TBox: 𝒯 Σ𝐵 = {𝐵 ⊑ 𝐴 ∣ for every 𝐴 ∈ 𝑆𝐶 }∪{𝐵 ⊑ ∀𝑟.𝐵 ∣ for every 𝑟 ∈ 𝑆𝑅}.
To simplify notation, we henceforth denote 𝒯 <𝑁𝐶 ({𝑠}),𝑁𝑅({𝑠})>𝐵 as 𝒯 𝑠𝐵 , and express
< 𝑁𝐶(Γ), 𝑁𝑅(Γ) > as Σ(Γ).

The following theorem is similar to Lemma 2.2 in [2], which considers subsumptions be-
tween concept names:

Theorem 2. An ℱℒ⊥-subsumption 𝑠 of the form 𝐶 ⊑ 𝐷 obtains iff 𝐶𝐵 ⊑𝒯 𝑠𝐵 𝐷𝐵.
If 𝜎 is a unifier of anℱℒ⊥ unification problem Γ of the minimal size where size of 𝜎 is sum of

{𝑠𝑖𝑧𝑒(𝜎(𝑋)) where 𝑋 is in domain of 𝜎}, then the signature of 𝜎 is contained in Σ(Γ). Therefore:



Theorem 3. Let Γ be a unification problem in ℱℒ⊥. Then Γ has an ℱℒ⊥-unifier iff Γ𝐵 has an
ℱℒ0-unifier w.r.t. the TBox 𝒯 Σ(Γ)

𝐵 .
We showed that the unification problem in ℱℒ⊥ can be reduced to a unification problem
in ℱℒ0 with a TBox. This does not give us a solution for the unification in ℱℒ⊥, since
unification in ℱℒ0 with a TBox is not solved. However, it show that the unification problem
in ℱℒ0 with a TBox is more difficult than unification in ℱℒ⊥.

6. Matching in ℱℒ⊥ is polynomial

The matching problem is a special kind of a unification problem 𝐶 ≡? 𝐷, where 𝐶 contains
no variables. In [3], it was shown that, with respect to general TBoxes, matching is ExpTime-
complete in ℱℒ0, whereas for a restricted form of TBoxes, namely forward TBoxes, the com-
plexity drops to PSpace. We can transfer this result to ℱℒ⊥ via Theorem 3, obtaining that
matching inℱℒ⊥ is in PSpace. In [4] (see Theorem 3.8) it was shown that matching inℱℒ⊥ is
polynomial. Here, we present another simple-to-implement algorithm which solves the match-
ing problem in ℱℒ⊥ in polynomial time.

Algorithm 1 Matching
Input: 𝐶 ≡? 𝐷,where 𝐶 does not contain variables, 𝐷 = 𝐸⊓∀𝑣1.𝑋1⊓⋯⊓∀𝑣𝑛 .𝑋𝑛 , where 𝐸 does not contain variables,
𝑋1, … , 𝑋𝑛 are (not necessarily different) variables, and 𝑣1, … , 𝑣𝑛 are words over 𝑁𝑅.
Output: True if there is a matcher, False otherwise.
1: procedureMatching(𝐶 ≡? 𝐷)
2: if 𝐶 ⋢ 𝐸 then
3: return False
4: else
5: for all ∀𝑣.𝐴 ∈ 𝐶 such that ∀𝑣.𝐴 ∉ 𝐸 and there is no ∀𝑣 ′.⊥ ∈ 𝐸 where 𝑣 ′ ≤ 𝑣 do
6: Find ∀𝑣𝑖.𝑋𝑖 such that 𝑣𝑖 ≤ 𝑣 (𝑣𝑖 is a prefix of 𝑣 )
7: if no ∀𝑣𝑖.𝑋𝑖 is found then
8: return False
9: return True

One can see that the algorithm must terminate in time polynomial in the size of the problem.
In order to justify the correctness of Algorithm 1 we define a special substitution 𝜎̂ . For every
𝑋 occurring in 𝐷, 𝜎̂ (𝑋 ) ∶= ⨅{∀𝑢.𝛼 ∣ ∀𝑣 .𝑋 ∈ 𝐷 and ∀𝑣𝑢.𝛼 ∈ 𝐶 where 𝛼 is a constant or ⊥}.
Next we prove that a matching problem 𝐶 ≡? 𝐷 has a unifier iff the substitution 𝜎̂ is a unifier.
The correctness follows from the fact that the algorithm computes the substitution 𝜎̂ .

7. Conclusions

We have presented three results related to the unification problem in ℱℒ⊥. The unification
type ofℱℒ⊥ turns out to be nullary. Hence,ℱℒ⊥ has the same type as the description logics
ℰℒ , ℱℒ0, and 𝒜ℒ𝒞 . The second result, reduction of the unification problem in ℱℒ⊥
to unification in ℱℒ0 modulo a TBox 𝒯 Σ𝐵 implies that the unification problem in ℱℒ⊥ is
easier than the one in ℱℒ0 with a TBox. It is even easier than the unification in ℱℒ0 with a
forward TBox. As the third result, we have presented a simple algorithm that solves matching
in polynomial time.



References

[1] E. Jerábek, Blending margins: the modal logic K has nullary unification type, J. Log.
Comput. 25 (2015) 1231–1240. doi:10.1093/LOGCOM/EXT055.

[2] F. Baader, R. Küsters, A. Borgida, D. L. McGuinness, Efficient tbox reasoning with value
restrictions using the ℱℒ0wer reasoner., Theory and Practice of Logic Programming 22
(2022) 162–192.

[3] F. Baader, O. Fernández Gil, P. Marantidis, Matching in the description logic FL0 with
respect to general tboxes (extended abstract), in: M. Simkus, G.Weddell (Eds.), Proceedings
of the 32nd International Workshop on Description Logics (DL’19), volume 2373 of CEUR
Workshop Proceedings, CEUR-WS, 2019.

[4] F. Baader, R. Küsters, A. Borgida, D. L. McGuinness, Matching in description logics, Journal
of Logic and Computation 9 (1999) 411–447.

http://dx.doi.org/10.1093/LOGCOM/EXT055

	1 Introduction
	2 The description logics FL0 and FL⊥
	3 Unification problem in FL⊥
	4 Type nullary result
	5 Reduction from FL⊥ to FL0 with a TBox
	6 Matching in FL⊥ is polynomial
	7 Conclusions

