Around unification in $\mathscr{F}\mathscr{L}_{\perp}$ – three related problems (Extended Abstract)

Barbara Morawska¹, Sławomir Kost¹

¹Institute of Computer Science, University of Opole, Poland

Abstract

In this paper we present three results concerning the unification problem in the description logic \mathscr{FL}_{\perp} . The logic \mathscr{FL}_{\perp} is a sub-Boolean logic that supports only conjunction, value restrictions, and the top and bottom constructors, without any form of negation. Subsumption in \mathscr{FL}_{\perp} can be decided in polynomial time. Although we do not solve the unification problem itself, we establish three related findings. First, we show that unification in \mathscr{FL}_{\perp} is of type nullary, a result inspired by a similar theorem for the modal logic K. Second, we reduce the unification problem in \mathscr{FL}_{\perp} to the unification problem in \mathscr{FL}_{\perp} can be solved in polynomial time and provide a new algorithm for it.

Keywords

description logic, unification type

1. Introduction

In this paper, we focus on a small description logic, \mathscr{FL}_{\perp} , which extends the constructors of its sister logic \mathscr{FL}_0 by adding the bottom concept. We present three results: the unification type of \mathscr{FL}_{\perp} is nullary, inspired by a similar result for the modal logic K (see [1]); the unification problem in \mathscr{FL}_{\perp} can be reduced to the one in \mathscr{FL}_0 with a special TBox, corresponding to [2]; and we present a simple-to-implement algorithm which solves the matching problem in \mathscr{FL}_{\perp} in polynomial time.

2. The description logics $\mathscr{F}\mathscr{L}_0$ and $\mathscr{F}\mathscr{L}_\perp$

All notions in this chapter are introduced for \mathscr{FL}_{\perp} . To obtain their equivalents in \mathscr{FL}_0 , simply omit \perp . In the description logic \mathscr{FL}_{\perp} , (complex) concepts are generated from two disjoint sets N_C and N_R , reffered to as concept names and role names, by the following grammar:

 $C ::= \top \mid \bot \mid A \mid C \sqcap C \mid \forall r.C$, where $A \in N_C, r \in N_R$.

This research is part of the project No 2022/47/P/ST6/03196 within the POLONEZ BIS programme co-funded by the National Science Centre and the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No. 945339. For the purpose of Open Access, the author has applied a CC-BY public copyright licence to any Author Accepted Manuscript (AAM) version arising from this submission.

🔂 DL 2025: 38th International Workshop on Description Logics, September 3–6, 2025, Opole, Poland

△ barbara.morawska@uni.opole.pl (B. Morawska); skost@uni.opole.pl (S. Kost)

© 0000-0003-4724-7206 (B. Morawska); 0000-0003-1898-9489 (S. Kost)

© 2025 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR Workshop Proceedings (CEUR-WS.org)

An interpretation of concepts in $\mathscr{F}\mathscr{L}_{\perp}$ is a pair $I=(\Delta^I,\cdot^I)$, where Δ^I is a non-empty domain of elements and \cdot^I is an interpreting function defined on concept names and role names as follow: $\forall^I=\Delta^I; \perp^I=\emptyset; A^I\subseteq\Delta^I$, for any $A\in N_C$; $r^I\subseteq\Delta^I\times\Delta^I$, for any $r\in N_R$, and extended to all complex concepts in the usual way: $(C\sqcap D)^I=C^I\cap D^I$; $(\forall r.C)^I=\{d\in\Delta^I\mid \forall e\in\Delta^I[(d,e)\in r^I\to e\in C^I]\}$; $(\forall v.C)^I=(\forall r_1\forall r_2...\forall r_n.C)^I$ where $v=r_1...r_n\in N_R^+$.

A concept may be reduced with the following reductions to an equivalent concept (interpreted by the same set in any interpretation): $C \sqcap \top, \top \sqcap C \rightsquigarrow C; C \sqcap \bot, \bot \sqcap C \rightsquigarrow \bot; \forall r. \top \rightsquigarrow \top; \forall r. (C \sqcap D) \rightsquigarrow \forall r. C \sqcap \forall r. D$. We call a concept C reduced iff none of the reduction rules applies.

For convenience, we will use the notation $\forall v.\alpha$ for the concept of the form: $\forall r_1(\forall r_2(...(\forall r_n.\alpha)))$, where $v = r_1...r_n$ and α is either \top or \bot or a concept name A. A concept of this form is called a *particle*. The word v over N_R is called *the role word of* the particle $\forall v.\alpha$. For role words v, v', by $v \le v'$ we denote that v is a prefix of v'.

It is easy to see that any concept is equivalent to a conjunction of particles, $C = \forall v_1.\alpha_1 \sqcap \cdots \sqcap \forall v_n.\alpha_n$, where v_1,\ldots,v_n are possibly empty words over N_R . In fact because of properties of conjunction, we identify a reduced concept with a set of particles in such a conjunction.

Let C be an \mathscr{FL}_{\perp} -reduced concept. We define rd(C) (role depth) and size(C) (size) recursively: if C = A or $C = \top$ or $C = \bot$, then rd(C) = size(C) = 0; if $C = C \sqcap D$, then $rd(C) = max(\{rd(C), rd(D)\})$ and size(C) = size(C) + size(D); if $C = \forall r.C', rd(C) = rd(C') + 1$ and size(C) = size(C') + 1.

Subsumption between concepts $C \sqsubseteq D$ obtains iff for all interpretations $I, C^I \subseteq D^I$. Equivalence: $C \equiv D$ iff $C \sqsubseteq D$ and $D \sqsubseteq C$. For any concept C, we have $\bot \sqsubseteq C$ and $C \sqsubseteq \top$. In \mathscr{FL}_\bot , let C and $D = \{P_1, \ldots, P_n\}$ be reduced concepts. Then $C \sqsubseteq D$ iif for every $P \in D$, one of the following holds: (1) $P \in C$, (2) $P = \forall v.\alpha$, where α is a concept name or \bot , and there exists $\forall v'.\bot \in C$ such that $v' \le v$.

3. Unification problem in $\mathscr{F}\mathscr{L}_{\perp}$

In order to define a unification problem, we partition the set of concept names N_C into two disjoint sets: variables (Var) and constants (Cons). A variable is thus a concept name that may be substituted by any concept while a constant cannot be substituted.

A *substitution* is a mapping from Var to the set of all \mathscr{FL}_{\perp} -concepts. It is extended to all concepts in the usual way. The *unification problem* (*unification problem*) is defined by its input $\Gamma = \{C_1 \sqsubseteq^? D_1, \dots, C_n \sqsubseteq^? D_n\}$; and the output is "yes" if there is a substitution that makes these subsumptions true, or "no" otherwise. Without loss of generality, we can assume that D_1, \dots, D_n are particles. A substitution σ is a *unifier* for the unification problem $\Gamma = \{C_1 \sqsubseteq^? P_1, \dots, C_n \sqsubseteq^? P_n\}$ iff $\sigma(C_1) \sqsubseteq \sigma(P_1), \dots, \sigma(C_n) \sqsubseteq \sigma(P_n)$. In this case, we say that the problem is *unifiable*.

Let Γ be an unification problem with the set of variables V and unifiers σ, γ . We say that σ is *more general* than γ (or γ is *less general* than σ), if there is a substitution τ such that $\gamma(X) \equiv \tau(\sigma(X))$, for all $X \in V$. If a unifier is more general than any other unifier, we call it a *most general unifier* (an mgu) of Γ .

A set Π of unifiers of a given unification problem Γ is called a *complete set of unifiers* if every unifier of Γ is less general than some element of Π . For a given unification problem Γ we define four *unification types* (from "best" to "worst") based on the existence and cardinality of its complete set. The problem has unification type: *unitary* if there exists complete set of

unifiers consisting of one unifier σ ; *finitary* if it has finite compete set of unifiers, but has no most general unifier; *infinitary* if it has an infinite minimal complete set of unifiers; *nullary* (or *zero*) if it has no minimal complete set of unifiers. The unification type of a logic (\mathcal{FL}_{\perp} in our case) is the worst unification type of its unifiable problems.

4. Type nullary result

In this section, we sketch a prove that $\mathscr{F}\mathscr{L}_{\perp}$ has nullary unification type by showing that the unification problem $\Gamma = \{X \sqsubseteq^? \forall r.X\}$ has no minimal complete set of unifiers. To this end, we introduce the set U of substitutions consisting of:

```
\sigma_0(X) = \bot; \ \sigma_n(X) = X \sqcap \forall r.X \sqcap ... \sqcap \forall r^{n-1}.X \sqcap \forall r^n.\bot, \ \text{for } n \ge 1; \ \sigma_\top(X) = \top. One can easily check that \sigma_\alpha(X) \sqsubseteq \sigma_\alpha(\forall r.X), for each \alpha \in \mathbb{N} \cup \{\top\}.
```

It can also be shown that the set U is complete for Γ . Let σ be a unifier for Γ not equal to σ_{\top} and let $\sigma_n \in U$ where $n = rd(\sigma(X))$. Then $\sigma(X) \equiv \sigma(\sigma_n(X))$.

At this point we know that U is a complete set of unifiers of Γ . To complete the argument, we observe that there is no minimal complete set of unifiers for Γ . It can be easily shown that: σ_{n+1} is more general that σ_n , but σ_n is not more general than σ_{n+1} , for each $n \geq 0$. Using a proof by contradiction we obtain the result:

Theorem 1. The type of the unification problem Γ is nullary.

5. Reduction from \mathcal{FL}_{\perp} to \mathcal{FL}_{0} with a TBox

A $\mathscr{F}\mathscr{L}_0$ TBox (TBox for short) is a finite set of $\mathscr{F}\mathscr{L}_0$ -subsumptions. A model of a TBox \mathscr{T} is an interpretation I such that $E^I\subseteq F^I$ for all $E\subseteq F\in\mathscr{T}$. Let C and D be concepts. We say that C is subsumed by D w.r.t. a TBox \mathscr{T} (written $C\subseteq_{\mathscr{T}}D$) if $C^I\subseteq D^I$ for each model I of \mathscr{T} . We say that σ is a unifier of a unification problem Γ w.r.t. a TBox \mathscr{T} if $\sigma(C)\subseteq_{\mathscr{T}}\sigma(D)$ for each $C\subseteq D\in\Gamma$.

Let C be an \mathscr{FL}_{\perp} concept, and B be a constant, that does not appear in C. By C_B we denote the \mathscr{FL}_0 -concept obtained from C by replacing all occurrences of \bot with the constant B. For $s=C\sqsubseteq D$, $s_B=C_B\sqsubseteq D_B$. Given a finite set Γ of \mathscr{FL}_{\perp} -subsumptions, we define the corresponding set Γ_B of \mathscr{FL}_0 -subsumptions by $\Gamma_B=\{s_B\mid s\in\Gamma\}$. For a given finite set of subsumptions Γ , $N_C(\Gamma)$ is the set of all concept names occurring in Γ , $N_R(\Gamma)$ is the set of all role names occurring in Γ . For a given signature $\Sigma=< S_C, S_R>$, where S_C is a finite subset of N_C and S_R is a finite subset of N_R , we define the following TBox: $\mathscr{T}_B^{\Sigma}=\{B\sqsubseteq A\mid \text{ for every }A\in S_C\}\cup\{B\sqsubseteq \forall r.B\mid \text{ for every }r\in S_R\}$. To simplify notation, we henceforth denote $\mathscr{T}_B^{< N_C(\{s\}),N_R(\{s\})>}$ as \mathscr{T}_B^s , and express $< N_C(\Gamma), N_R(\Gamma)>$ as $\Sigma(\Gamma)$.

The following theorem is similar to Lemma 2.2 in [2], which considers subsumptions between concept names:

Theorem 2. An $\mathscr{F}\mathscr{L}_{\perp}$ -subsumption s of the form $C \sqsubseteq D$ obtains iff $C_B \sqsubseteq_{\mathscr{T}_p^s} D_B$.

If σ is a unifier of an \mathscr{FL}_{\perp} unification problem Γ of the minimal size where size of σ is sum of $\{size(\sigma(X))\}$ where X is in domain of σ , then the signature of σ is contained in $\Sigma(\Gamma)$. Therefore:

Theorem 3. Let Γ be a unification problem in \mathscr{FL}_{\perp} . Then Γ has an \mathscr{FL}_{\perp} -unifier iff Γ_B has an \mathscr{FL}_0 -unifier w.r.t. the TBox $\mathscr{T}_B^{\Sigma(\Gamma)}$.

We showed that the unification problem in \mathscr{FL}_{\perp} can be reduced to a unification problem in \mathscr{FL}_0 with a TBox. This does not give us a solution for the unification in \mathscr{FL}_{\perp} , since unification in \mathscr{FL}_0 with a TBox is not solved. However, it show that the unification problem in \mathscr{FL}_0 with a TBox is more difficult than unification in \mathscr{FL}_{\perp} .

6. Matching in $\mathcal{F}\mathcal{L}_{\perp}$ is polynomial

The matching problem is a special kind of a unification problem $C \equiv^? D$, where C contains no variables. In [3], it was shown that, with respect to general TBoxes, matching is ExpTime-complete in \mathscr{FL}_0 , whereas for a restricted form of TBoxes, namely *forward TBoxes*, the complexity drops to PSpace. We can transfer this result to \mathscr{FL}_\perp via Theorem 3, obtaining that matching in \mathscr{FL}_\perp is in PSpace. In [4] (see Theorem 3.8) it was shown that matching in \mathscr{FL}_\perp is polynomial. Here, we present another simple-to-implement algorithm which solves the matching problem in \mathscr{FL}_\perp in polynomial time.

Algorithm 1 Matching

return False

```
Input: C \equiv^? D, where C does not contain variables, D = E \sqcap \forall v_1.X_1 \sqcap \cdots \sqcap \forall v_n.X_n, where E does not contain variables,
X_1, \dots, X_n are (not necessarily different) variables, and v_1, \dots, v_n are words over N_R.
Output: True if there is a matcher, False otherwise.
 1: procedure Matching(C \equiv^? D)
 2:
         if C \not\sqsubseteq E then
 3:
              return False
 4:
          else
              for all \forall v.A \in C such that \forall v.A \notin E and there is no \forall v'.\bot \in E where v' \le v do
 5:
 6:
                   Find \forall v_i.X_i such that v_i \leq v (v_i is a prefix of v)
 7:
                   if no \forall v_i.X_i is found then
```

One can see that the algorithm must terminate in time polynomial in the size of the problem. In order to justify the correctness of Algorithm 1 we define a special substitution $\hat{\sigma}$. For every X occurring in D, $\hat{\sigma}(X) := \bigcap \{ \forall u.\alpha \mid \forall v.X \in D \text{ and } \forall vu.\alpha \in C \text{ where } \alpha \text{ is a constant or } \bot \}$. Next we prove that a matching problem $C \equiv^? D$ has a unifier iff the substitution $\hat{\sigma}$ is a unifier. The correctness follows from the fact that the algorithm computes the substitution $\hat{\sigma}$.

7. Conclusions

return True

8:

We have presented three results related to the unification problem in $\mathscr{F}\mathscr{L}_{\perp}$. The unification type of $\mathscr{F}\mathscr{L}_{\perp}$ turns out to be nullary. Hence, $\mathscr{F}\mathscr{L}_{\perp}$ has the same type as the description logics $\mathscr{E}\mathscr{L}$, $\mathscr{F}\mathscr{L}_0$, and $\mathscr{A}\mathscr{L}\mathscr{C}$. The second result, reduction of the unification problem in $\mathscr{F}\mathscr{L}_{\perp}$ to unification in $\mathscr{F}\mathscr{L}_0$ modulo a TBox \mathscr{T}^Σ_B implies that the unification problem in $\mathscr{F}\mathscr{L}_1$ is easier than the one in $\mathscr{F}\mathscr{L}_0$ with a TBox. It is even easier than the unification in $\mathscr{F}\mathscr{L}_0$ with a forward TBox. As the third result, we have presented a simple algorithm that solves matching in polynomial time.

References

- [1] E. Jerábek, Blending margins: the modal logic K has nullary unification type, J. Log. Comput. 25 (2015) 1231–1240. doi:10.1093/LOGCOM/EXT055.
- [2] F. Baader, R. Küsters, A. Borgida, D. L. McGuinness, Efficient thox reasoning with value restrictions using the \mathscr{FL} 0wer reasoner., Theory and Practice of Logic Programming 22 (2022) 162–192.
- [3] F. Baader, O. Fernández Gil, P. Marantidis, Matching in the description logic FL0 with respect to general thoxes (extended abstract), in: M. Simkus, G. Weddell (Eds.), Proceedings of the 32nd International Workshop on Description Logics (DL'19), volume 2373 of CEUR Workshop Proceedings, CEUR-WS, 2019.
- [4] F. Baader, R. Küsters, A. Borgida, D. L. McGuinness, Matching in description logics, Journal of Logic and Computation 9 (1999) 411–447.