FILO: unification solver for FL_0 (Extended Abstract)

Barbara Morawska!, Stawomir Kost!, Dariusz Marzec! and Michal Henne!

"University Of Opole, Plac Kopernika 11a, 45-040 Opole

Abstract

In this paper, we present FILO, the first application that decides the unification problem for the description logic
FLo. This is a restricted description logic that allows only conjunction, the top constructor and value restrictions
to construct complex concepts from a set of concept names (unary predicates) and role names (binary predicates).
Unification of concepts in Description Logics has been proposed as a non-standard reasoning task that can help
eliminate redundancies in ontologies. The unification problem in F Lo is ExpTime-complete. FILO is based on an
algorithm that is exponential only in the worst case. The algorithm used by FILO is based on the one described
in [1].

Keywords
Description Logic, Unification, Automated reasoning

1. Introduction

The description logic £ is a member of a family of lightweight description logics with restricted
expressive power. It provides only the intersection (conjunction) constructor, fop concept, and value
restrictions of the form Vr.C', where C is a concept and r is a role name. Here we present an implemen-
tation of a unification algorithm for concepts in F L.

The unification problem in DLs was, in fact, first defined for this logic. It was shown in [2] to be
an ExpTime-complete problem. The algorithm presented there reduces the problem to the emptiness
problem for a root-to-frontier automaton on trees. Since the automaton is of size exponential in the size
of a unification problem, this establishes the exponential upper bound. The lower bound was established
in the same paper by a reduction from the intersection problem for root-to-frontier automata on trees.

For some reasons, this algorithm was never implemented. One possible reason is that researchers’
focus shifted to another small DL, namely to ££. The small description logic ££ does not have a
value restriction constructor, but provides instead an existential restriction: 3r.C, which expresses the
requirement that an object be related by a relation r to another object that satisfies the concept C.

In [1], a new unification algorithm was developed. It is based on a reduction to the problem of finding
a special kind of model for a set of anti-Horn clauses. Now, that algorithm has been revised and adapted
for implementation [3]. This implementation, called FILO, operates on unification problems in the
form of ontology files, where variables are marked with the _var suffix. FILO detects that if an input
problem is unifiable, then it outputs a unifier that can be extracted from its computations.

FILO joins a family of similar applications, such as UEL [4] which solves unification problems in the
description logic £L£, F Lower [5], a subsumption decider for F Ly with TBox, CEL [6] and JCEL [7]
subsumption deciders for ££ with TBox, and others. These systems play an important role in various
knowledge representation reasoning problems.

An extended version of this paper can be found in [3].

This research is part of the project No 2022/47/P/ST6/03196 within the POLONEZ BIS programme co-

funded by the National Science Centre and the European Union’s Horizon 2020 research and innovation **
programme under the Marie Sklodowska-Curie grant agreement No. 945339. For the purpose of Open *
Access, the author has applied a CC-BY public copyright licence to any Author Accepted Manuscript

(AAM) version arising from this submission.

%—DL 2025: 38th International Workshop on Description Logics, September 3—6, 2025, Opole, Poland
& barbara.morawska@uni.opole.pl (B. Morawska); skost@math.uni.opole.pl (S. Kost); dariusz.marzec@uni.opole.pl
(D. Marzec); michal.henne@uni.opole.pl (M. Henne)

© 2025 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

L == CEUR Workshop Proceedings (CEUR-WS.org)

mailto:barbara.morawska@uni.opole.pl
mailto:skost@math.uni.opole.pl
mailto:dariusz.marzec@uni.opole.pl
mailto:michal.henne@uni.opole.pl
https://creativecommons.org/licenses/by/4.0
https://ceur-ws.org
https://ceur-ws.org

2. The description logic F L,

Complex concepts in F L are constructed from a countable set of concept names (unary predicates) IN
and a countable set of role names (binary relations) R according to the following grammar: C' ::= A |
CnC|Vr.C|T,where A€ Nandr € R.

An interpretation [is a pair (A’ -7), where A is a non-empty domain and -/ is an interpretation
function. The interpretation of concept names (A’ C A’) and role names (r! C A’ x A') is extended
to all concepts in the standard way: (C1 1M C2)! = CI N CL, (vr.C) = {e € AT | Vyenr((e,d) €
I — de C'I)}, T! = Al.. We define C' C D iff for every interpretation I, C! C D! and C = D
ifCC Dand D C C.

We write Vr1.Vra. ... Vr,.A as Yv.A, where v is a word over R, and call such a concept a particle.
With respect to the equivalence, one can easily observe that the intersection of concepts is associative,
commutative, idempotent and has T as its unit element. The value restriction behaves as a homomor-
phism: Vr.(E 1 F) = Vr.E N Vr.F. Thus, each concept can be identified as a set of particles, and the
empty setis T.

In F Ly, subsumption between two concepts C' and D can be decided in polynomial time.

Lemmal. LetC =P M---MPyandD =P/ 1---MNP..

1. CC Diffforeveryl <i<n,PM---MNPF, C P
2. foreveryl <i<mn,P M---MP, CPiff Pl e{Pi, -, Py}

Proof. Both these statements follow from the properties of subsumption that establish a partial order
with respect to the sets of particles. O

In order to define a unification problem in F L, we divide the set of concept names N into two disjoint
sets: constants, denoted C and variables, denoted Var. Variables may be substituted by concepts, and
constants cannot be substituted.

A substitution ¢ is a mapping initially defined for Var, assigning to them possibly complex concepts.
Itis then extended to all concepts in the usual way: o(A) := A, where A € C,0(EMNF) := o(E)No(F),
o(Vr.E) :=Vr.o(E),o(T) :=T.

The unification problem is then defined by its input and output as follows.

Input: I' = {C} cC’Dy,...,C,C7 D, },whereC; ...Cy, Dy ... D, are F Ly-concepts constructed
over constants and variables. We call C' =7 D € T an input goal. Due to Lemma 1, we can assume that
for each input goal C C* D, D is a particle.

Output: “true” if there is a substitution v such that v(C1) C v(D1),...,v(Cy) C v(D,,) and “false”
otherwise. The substitution 7 is called a unifier or a solution of T'.

3. Solver

FILO is an application written in Java using the OWL API and Maven for dependency management. As
of now it is a standalone application (FILO.jar). The compiled file is available at https://unifdl.cs.uni.
opole.pl/unificator-app-for-the-description-logic-fl_0/ and the source files are available in a public
GitHub repository https://github.com/barbmor/FILO.

A unification problem which can be solved by FILO must be provided in the form of an ontology file.
Such an ontology may be created using the ontology editor Protégé’. The concept names in such an
ontology are treated by FILO as constants, unless they have the _var suffix. Input goals are defined as
general class axioms or as concept subsumptions expressed through class hierarchy statements. FILO
recognizes concept names (constants and variables), intersections of concepts, value restrictions and
the T constructor. It reports an error if an unsupported constructor is encountered while reading the
input file.

'https://protege.stanford.edu/

https://unifdl.cs.uni.opole.pl/unificator-app-for-the-description-logic-fl_0
https://unifdl.cs.uni.opole.pl/unificator-app-for-the-description-logic-fl_0/
https://unifdl.cs.uni.opole.pl/unificator-app-for-the-description-logic-fl_0
https://unifdl.cs.uni.opole.pl/unificator-app-for-the-description-logic-fl_0/
https://github.com/barbmor/FILO
https://github.com/barbmor/FILO
https://protege.stanford.edu/

4. Overview of FILO computation

FILO is based on the algorithm presented in [1], but at first glance, it may seem quite different. This is
because the algorithm there is formulated for a class of first-order clauses, solving the problem of the
existence of a finite Herbrand model for this class.

Nevertheless, the algorithm in [1] can be easily modified to work directly on JF Ly-subsumptions,
without translating them into first-order clauses. Therefore, in [3], the correctness of the algorithm
is re-proved in the notation of FLy. The main differences concern the way shortcuts are defined.
Here, we treat them as sets of variables, whereas in [1], they are pairs consisting of one predicate
and a set of predicates. There are also differences in how shortcuts are computed: here, we check
sets of variables, while in [1], shortcuts are computed via possibilities. Other differences stem from
programming considerations, for example, the way we treat choices for variables. All these details are
addressed in the correctness proofs in [3].

4.1. Flattening I - reading input

During this stage, the internal structures representing concepts from the input ontology are created.
Concept intersections from the input are represented by sets of flat particles of the form Vr.C', where C
is a variable or a constant. The internal representation of the input after Flattening I is called a Filo
model.

Example 1. Let an input goal in the notation of FLq be: Vrss. Ay Vrsr. Ay MVr. Xyer M Vrr. Ay =°
Vr. Ay MVrr.Ag MVrs. Xyar (Example 16 in FILO). After the Flattening I stage, we get the following set of
equivalences:

Var2 =Vs. Ay, Varb=Vr.As, Var0=Vr.As, Var6 =Vs.Xyar,
Vard =Vs.Var2, Varl =Vr.As, Var3 =Vs.Varl,
Vr.Vard MVr. Xye, MVr.VarO MVr.Var3d = Vr.Varb MVr.A; M Vr.Var6.

4.2. Main loop

After successfully reading the input and creating a Filo model, FILO enters a loop: for each constant
in the model. If there are no constants, only variables, then FILO returns success and the problem
has a solution sending all variables to T. Otherwise, FILO attempts to solve the problem for each
constant separately—in the manner presented in [2]-then combines solutions into one using intersection
constructor. If it returns failure for any one of them, it breaks the main loop immediately returning
failure. Such a problem is not unifiable. Let us fix the current constant As.

4.3. Flattening Il

Depending on the current constant, FILO performs further flattening. The goal of this stage is to obtain
flat subsumptions of the form X; M--- M X, C’ Y, where all of the concept names are variables or
the current constant, and additional increasing subsumptions of the form X T’ Vr.X". The set of flat
subsumptions and increasing subsumptions is called a generic goal.

Example 2. Following Example 1, flattening II yields the generic goal w.r.t. the constant As:

flat subsumptions: Var2 =T, Vars" = Asg, VarQ" = Asg, Var6® = Xyar,
Vard =T, Varl" = As, Var3® =Varl, Vard 1 Xyer MVar0MVard E Vard,
Vard M Xye M Var0M Var3 C Vare, Var5MVar6 C Vard, Var5MVar6 C X,ur,

Var5MVar6e C Var0, Var5MVare C Var3;

increasing subsumptions: Varb C Vr.Var5", Var0 C Vr.Var0", Var6 C Vs.Var6®, Varl C
VrVarl", Var3d C Vs.Var3®, where Var5",Var0",Var6®, Varl”,Var3® are decomposition vari-
ables. Note that Var4d is T since Var2 is.

4.4. Choice and Implicit Solver

Now FILO has to make choices for each variable predicting their values in a solution: TOP if it is an
empty conjunction, or CONSTANT if some of the particles contained in a solution is the current constant,
or NEITHER otherwise. If there are no variables, only the current constant, FILO checks solvability of
the generic goal by Implicit Solver (it must return either success or failure). Otherwise, FILO checks all
consistent choices for all variables in the generic goal, i.e. choices in which the decomposition variables
and their parents satisfy appropiate relations. Hence, here FILO enters another loop.

Implicit Solver checks which subsumptions are solved by the current choice for variables. It may also
detect contradictions. If this is the case, FILO aborts the computation, returns failure for the current
choice and proceeds to check the next choice and starting from the generic goal, to construct another
goal again. If the set of flat subsumptions is empty, FILO returns success for the current constant. If
there are no choices left, the loop for choices is ended and the program returns failure. Let us fix the
current consistent choice.

Example 3. Continuing with Example 2, FILO searches for a consistent choice, and finds: {V ar2, Var4d} —
TOP,{Var5",Var0",Varl"} — CONSTANT and the rest of variables is NEITHER.

For this choice, Var2 = T,Vard" = Ay, Var0" = Ay, Vard = T, Varl” = Ay, Varb5 M Var6 C
Var4 are trivially satisfied. For the last subsumption, note that its right-hand is TOP. The rest of subsump-
tions is already flat.

4.5. Shortcuts

If the set of flat subsumptions is not empty, FILO starts computation with shortcuts, i.e. sets of variables
that satisfy all the flat subsumptions of the goal. It enters a loop computing shortcuts. Now, FILO
attempts to extend the set of already computed shortcuts using the so-called resolving relation: S is
resolved by S’ w.r.t. a role name 7 iff X" € S implies X € 5" and if Y is defined for Y € ', then
Y" € S. If the initial shortcut, i.e. the set of the form {X | X is assigned the choice CONSTANT},
is computed, this means success for the current constant-FILO aborts computing new shortcuts.
Otherwise, if the initial shortcut cannot be reached, it means failure for the current choice.

Example 4. Continuing with Example 3, a shortcut of height 0, ie without decom-
position variables, is {Var6,Var3}. Then, FILO proceeds to compute next shortcuts:
{Xvar, Var5,Var0,Varl,Var3,Var6®, Var3®} and {Varl”, Var5", Var0"} which is also the initial
shortcut. At this moment, the computation is terminated with success for the given constant. The partial
solution is: {Varl",Var5",Var0"} — Ay, {Xyar, Vars, Var0,Varl,Var3,Var6®,Var3®} —
Vr.Ag,{Var6,Var3} — Vsr.As.

Assuming we obtain the partial solution for the constant Ay: {A,Var2® Var6®}
A1, { Xvar, Var6, Vard® Var2,Var6®, Vard} — Vs. Ay, {Vard,Var6} — Vss.A1, we obtain the
following solution for the input goal: X g, +— Vr.Aa M A1 MVs.A;.

5. Examples

FILO provides more than 20 examples, available in the dropdown menu in its interface. Among the
examples, Example 16 is taken from [2]. FILO computes the same solution as presented in this paper,
and the computation takes 3700 ms. During the computation, FILO worked with at most 29 variables,
rejected 1290 goals in the pre-processing stage, and entered the shortcut computation stage 8 times. We
utilized a machine with the following specifications: Intel(R) Core(TM) i7-1355U (1.70 GHz), 32.0 GB
RAM, 64-bit operating system, running Windows 11 Pro (24H2).

Out of the examples provided, Example 8 is most difficult. It contains two constants and is not
unifiable for either of them. Hence it terminates with failure after checking the generic goal produced
for one constant only. Nevertheless it takes 7545 ms to terminate. The maximal number of variables is
33 and 1525 goals are rejected in the pre-processing stage, while the shortcuts were computed 12 times.

References

[1]

[7]

S. Borgwardt, B. Morawska, Finding finite Herbrand models, in: N. Bjgrner, A. Voronkov (Eds.),
Proc. of the 18th Int. Conf. on Logic for Programming, Artificial Intelligence, and Reasoning
(LPAR-18), volume 7180 of Lecture Notes in Computer Science, Springer, 2012, pp. 138-152. URL:
https://doi.org/lo.1007/978—3—642—28717—6_13. d0i:10.1007/978-3-642-28717-6_13.

F. Baader, P. Narendran, Unification of concept terms in description logics, Journal of Symbolic
Computation 31 (2001) 277-305. doi:10.1006/jsco.2000.0426.

B. Morawska, D. Marzec, S. Kost, M. Henne, Filo — automated unification in F L, https://arxiv.org/
abs/2502.14130, 2025. URL: https://arxiv.org/abs/2502.14130. arXiv:2502.14130.

F. Baader, S. Borgwardt, J. Mendez, B. Morawska, UEL: unification solver for EL, in: Y. Kazakov,
D. Lembo, F. Wolter (Eds.), Proceedings of the 2012 International Workshop on Description Logics,
DL-2012, Rome, Italy, June 7-10, 2012, volume 846 of CEUR Workshop Proceedings, CEUR-WS.org,
2012. URL: https://ceur-ws.org/Vol-846/paper_8.pdf.

F. Baader, P. Koopmann, F. Michel, A. Turhan, B. Zarrief3, Efficient tbox reasoning with value
restrictions using F Lower reasoner, Theory Pract. Log. Program. 22 (2022) 162-192. doi:10.1017/
S1471068421000466.

F. Baader, C. Lutz, B. Suntisrivaraporn, CEL - A polynomial-time reasoner for life science ontologies,
in: U. Furbach, N. Shankar (Eds.), Automated Reasoning, Third International Joint Conference,
IJCAR 2006, Seattle, WA, USA, August 17-20, 2006, Proceedings, volume 4130 of Lecture Notes in
Computer Science, Springer, 2006, pp. 287-291. doi:10.1007/11814771_25.

J. Mendez, jcel: A modular rule-based reasoner, in: I. Horrocks, M. Yatskevich, E. Jiménez-Ruiz
(Eds.), Proceedings of the 1st International Workshop on OWL Reasoner Evaluation (ORE-2012),
Manchester, UK, July 1st, 2012, volume 858 of CEUR Workshop Proceedings, CEUR-WS.org, 2012.
URL: https://ceur-ws.org/Vol-858/ore2012_paper12.pdf.

https://doi.org/10.1007/978-3-642-28717-6_13
http://dx.doi.org/10.1007/978-3-642-28717-6_13
http://dx.doi.org/10.1006/jsco.2000.0426
https://arxiv.org/abs/2502.14130
https://arxiv.org/abs/2502.14130
https://arxiv.org/abs/2502.14130
http://arxiv.org/abs/2502.14130
https://ceur-ws.org/Vol-846/paper_8.pdf
http://dx.doi.org/10.1017/S1471068421000466
http://dx.doi.org/10.1017/S1471068421000466
http://dx.doi.org/10.1007/11814771_25
https://ceur-ws.org/Vol-858/ore2012_paper12.pdf

	1 Introduction
	2 The description logic FL0
	3 Solver
	4 Overview of FILO computation
	4.1 Flattening I – reading input
	4.2 Main loop
	4.3 Flattening II
	4.4 Choice and Implicit Solver
	4.5 Shortcuts

	5 Examples

