CATS Solver: The Rise of Hybrid Abduction
Algorithms

Jakub Kloc, Janka Boborova, Martin Homola and Julia Pukancova

Comenius University in Bratislava, Mlynska dolina, 842 41 Bratislava, Slovakia

Abstract

The state-of-the-art complete algorithms to solve ABox abduction in DL include the original Reiter’s
algorithm for minimal hitting sets alongside its more recent updates: Wotawa’s HST and Pill and
Quaritch’s RC-Tree. On the other hand, incomplete methods that quickly find some but not all solutions
include Junker’s QuickXplain and MergeXplain by Shchekotykhin et al. We present CATS, a new
modular ABox abduction solver. It implements all the said algorithms together with the hybrid MHS-
MXP, recently introduced by Homola et al., and two new analogous variants: HST-MXP and RCT-MXP,
based on HST and RC-Tree, respectively. The user can choose any of the eight algorithms. The solver
uses the JFact reasoner as a black box and thus allows any DL expressivity up to SROZQ. The modular
implementation served as a test bed for an evaluation and comparison of the implemented algorithms,
which we conducted over the LUBM ontology. Out of the complete algorithms, the hybrid ones were
proven to find explanations faster, and they were also more memory-efficient.

Keywords

Description logics, ABox abduction, abduction algorithms, solver, empirical evaluation

1. Introduction

Abduction [1, 2] is a fundamental way of reasoning, alongside in-
duction and deduction. Its objective is to provide hypothetical ex-
planations for a given observation that is not entailed by the avail-
able knowledge. As an ampliative form of reasoning, it generates
genuinely new knowledge that cannot be derived through classical
deductive reasoning. In the context of description logics (DL) and
ontologies, it was long considered a non-standard reasoning problem
[2]; however, recently it has been receiving more and more attention
(3,4,5,6,7,8,9, 10, 11, 12, 13, 14]. DL-based abduction has been ap-
plied in various domains, such as ontology engineering [15], ontology
debugging [16] and repair [17], medical diagnosis [18, 19, 20, 21, 22], system diagnosis [23],
multimedia interpretation [24], and e-commerce [25].

Figure 1: CATS logo

’;Q-DL 2025: 38th International Workshop on Description Logics, September 3—6, 2025, Opole, Poland

& kloc4@uniba.sk (J. Kloc); boborova@fmph.uniba.sk (J. Boborova); homola@fmph.uniba.sk (M. Homola);
pukancova@fmph.uniba.sk (J. Pukancova)

& https://dai.fmph.uniba.sk/~homola/ (M. Homola); https://dai.fmph.uniba.sk/~pukancova/ (J. Pukancova)

® 0009-0002-7487-9962 (J. Boborova); 0000-0001-6384-9771 (M. Homola); 0009-0001-3505-0716 (J. Pukancova)
© 2025 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

#—== CEUR Workshop Proceedings (CEUR-WS.org)

mailto:kloc4@uniba.sk
mailto:boborova@fmph.uniba.sk
mailto:homola@fmph.uniba.sk
mailto:pukancova@fmph.uniba.sk
https://dai.fmph.uniba.sk/~homola/
https://dai.fmph.uniba.sk/~pukancova/
https://orcid.org/0009-0002-7487-9962
https://orcid.org/0000-0001-6384-9771
https://orcid.org/0009-0001-3505-0716
https://creativecommons.org/licenses/by/4.0
https://ceur-ws.org
https://ceur-ws.org

There are various types of algorithms that can be utilized to solve an abduction problem.
Our research focuses mainly on those that offer the following advantageous properties [26]:
(1) Applicability to knowledge bases of any expressivity, or even to any logic (with entailment
and model-theoretic semantics); (2) Completeness, meaning they guarantee finding all possible
explanations; (3) Black-box reasoning, allowing supporting reasoning tasks required for comput-
ing explanations to be delegated to an external reasoner; (4) Requiring no additional information
about the problem.

One such algorithm is the well-explored Reiter’s minimal hitting set algorithm (MHS) [27],
along with its hybrid version, MHS-MXP [28], which combines Reiter’s algorithm with the
efficient but incomplete divide-and-conquer MergeXplain (MXP) method [29]. Both were
implemented in the MHS-MXP abduction solver [28], currently one of the few publicly available
abduction solvers [30, 13], and the only one supporting multiple algorithms.

However, the MHS-MXP solver has notable shortcomings. It suffers from memory manage-
ment issues, with one of its evaluations resulting in out-of-memory errors in 57% of cases [31].
Additionally, it adopts a modified version of Reiter’s MHS algorithm that preserves completeness
at the cost of sacrificing some of the original optimizations, which, when combined, may lead
to the omission of explanations [32].

To address this limitation, we explore alternatives to Reiter’s algorithm that aim to resolve the
incompleteness of MHS in a more efficient manner, namely, Wotawa’s Hitting Set Tree (HST)
algorithm [33] and RC-Tree (RCT) algorithm [34]. We apply them to solve the abduction problem,
and propose new hybrid algorithms by combining them with the MergeXplain method. We then
present an improved version of the solver that supports MHS, HST and RC-Tree, together with
their hybrid versions MHS-MXP, HST-MXP and RCT-MXP, and the two incomplete algorithms
MergeXplain and QuickXplain [35]. This new version, rebranded as CATS (Comenius Abduction
Team Solver), is freely available!.

Finally, we provide an empirical evaluation of the algorithms on a dataset derived from the
LUBM ontology [36], focusing on the cumulative amount of computed explanations over time.
The results show a significant advantage of the hybrid algorithms, particularly MHS-MXP and
RCT-MXP. We also show that the hybrid algorithms are more efficient in memory usage.

2. Preliminaries

2.1. Description Logics

The vocabulary of ALC [37, 38] consists of three countable, mutually disjoint sets of non-logical
symbols: individuals (denoted Ny), atomic concepts (denoted N¢) and roles (denoted Ng). ALC
concepts are recursively built using the following grammar: C, D == A | =C' | CND | CUD |
Vr.C'| 3r.C, where A € N¢ and r € Npg. The logical symbols used in the grammar, called
constructors, are as follows: = (complement), M (concept intersection), LI (concept union), 3
(existential restriction), V (value restriction). The semantics is defined using an interpretation
T = (A%, 1), which consists of a non-empty domain AZ and an interpretation function -*
such that: a € A for every a € Ny; CF C A for every concept C; 72 C AT x AZ for every

'https://github.com/Comenius- Abduction-Team/CATS- Abduction-Solver

https://github.com/Comenius-Abduction-Team/CATS-Abduction-Solver

r € Ngr. A DL knowledge base (KB) K = (7, .A) consists of a TBox 7T (intensional knowledge)
and an ABox A (extensional knowledge), whilst 7 contains general concept inclusion (GCI)
axioms in form C' C D for any concepts C, D, and A contains concept assertions a: C', and
role assertions a,b: R for a,b € Nj, R € Np, and any concept C.

An interpretation Z satisfies an axiom ¢ (Z |= ¢) if and only if: if = C' T D then C% C DZ;
if p = C(a) then a” € CZ;if ¢ = R(a,b) then (a”,b) € RE. T is amodel of a KB K (Z |= K)
if and only if it satisfies all axioms in K. K is consistent if and only if it has a model. K entails
¢ (K = ¢) if and only if ¢ is satisfied by every model of K.

2.2. Abduction

In an ABox abduction problem [28, 2], we are looking for explanations for a given DL knowledge
base K and an observations O (an ABox assertion), as defined below.

Definition 1 (ABox abduction problem). Let abducibles Abd be a finite set of ABox axioms,
background knowledge KC a DL knowledge base, and observation O an ABox axiom. An explanation
of an ABox abduction problem P = (K,0Q’) is a finite set of ABox axioms & C Abd such that
Kué&Eo.

The space of possible explanations is limited to axioms from the set of abducibles Abd. They
are also typically limited to so-called desired explanations, i.e., (in this work) they must be
consistent (€ U K is consistent); relevant (O [~ £); explanatory (K [~ O); and minimal (there is
no other explanation £’ s.t. £’ C £).

The ABox abduction problem can be reduced to a consistency-checking problem [39]: KUE =
Oifand only if K" = KUEU{—0} is inconsistent, i.e., K’ has no models. It has been established
that finding all minimal explanations of some P = (/C, O) corresponds w.r.t. Abd to finding all
minimal hitting sets of F', where F' is the collection of negated models of L U {=O} w.r.t. Abd
[11, 27].

Definition 2 (Minimal hitting set). Given a collection of sets I, a hitting set for F' is a set H
such that H NS # () for every set S € F. A hitting set H for F' is minimal if there is no other
hitting set H' for F' such that H' C H.

Definition 3 (Negated model w.r.t. Abd). Given a model Z, its negation w.r.t. Abd is a finite set
of ABox axioms defined as {—¢ € Abd | T |= ¢}, where ¢ is an atomic (concept/role) assertion.

2.2.1. Reiter’s Minimal Hitting Set Algorithm

A classical algorithm for computing all minimal hitting sets, introduced by Reiter [27], was
adapted for ABox abduction [11]. It builds a hitting set tree (HS-tree) in breadth-first order,
where each node n is labelled by £(n) - a negated model of K' = KUH (n)U{—~0}, where H(n)
is the set of edge-labels from the root to n. For each element o € £(n) there is a child n, of n
where the edge (n, n,) is labelled by £(n, n,) = o. Each path H (n) is thus a “candidate” hitting
set, and its construction continues until it no longer can be extended, i.e., if U H(n) U {0}
no longer has a model, then H (n) is an explanation and the branch closes.

The algorithm uses three pruning conditions: the first two close nodes whose paths H(n)
are redundant w.r.t. other existing paths; the last one removes whole subtrees that are found
to be unnecessary, because all hitting sets that could be found in them can also be found in
another part of the tree. However, applying all the conditions can lead to loss of explanations
[32]. One way to retain completeness is to omit the third condition at the cost of losing the
optimization. With this applied, all explanations of size x are guaranteed to be found in the zth
level of the tree. The algorithm though cannot detect when all explanations are found and it
continues building the tree as long as new branches can be generated.

2.2.2. RC-Tree Algorithm

Several alternatives to Reiter’s algorithm aim to address its incompleteness. One such method
is the RC-Tree (RCT) algorithm [34].2

Instead of closing nodes with duplicate paths, RCT never creates such paths in the first place.
Every node n is assigned an exclusion set §(n), containing axioms that n cannot use to generate
child edges. This includes axioms already used by n’s ancestors and siblings, assuring that
every path under n will be unique. Using this strategy, RCT tries to create a tree that is as small
as possible, but still sufficient to find all explanations.

However, this means that removing a subtree with the third pruning condition would prevent
some subsets of abducibles from ever being generated, even possible explanations. To prevent
this, every pruning updates the fs in the tree — axioms that disappeared from the tree are
removed from s and they are used to generate new edges, no longer redundant. This way,
unlike Reiter’s algorithm, RCT can create branches in any level of the tree, not only the last one.
This approach requires more memory (storing 0s) and repeated tree traversal.

2.2.3. HST Algorithm

Wotawa’s Hitting Set Tree (HST) algorithm [33], another variant of Reiter’s method, also ensures
that duplicate paths cannot be created. Instead of navigating through the search space based on
the negated models, the algorithm systematically enumerates every possible combination of
abducible axioms. However, at any given point, this only includes abducibles that have appeared
in at least one negated model so far, since unused axioms cannot be part of any minimal hitting
set (per Definition 2). To track this, every time a new axiom is encountered in a negated model,
HST assigns it a unique integer index (the approach to generating all combinations uses integer
intervals) . Unlike Reiter’s and RC-Tree, HST uses negated models only for this purpose. Once
all abducibles are numbered, the models are no longer needed to be stored nor obtained anew.

2.2.4. MHS-MXP Algorithm

Reiter’s algorithm also inspired MHS-MXP [28], the only approach here specifically designed
for ABox abduction. It leverages the MergeXplain (MXP) algorithm [29], which finds minimal
inconsistent axiom sets using repeated calls to QuickXplain (QXP) [35]. QXP is much faster

*Though these hitting set algorithms are not adapted for DL abduction, we use abduction-related terminology for
simplicity.

than Reiter’s method but can find only one explanation. MXP improves this by finding multiple
explanations but still cannot guarantee completeness.

MHS-MXP builds a HS-tree, but instead of consistency checks, it calls MXP using the current
node’s path. This allows MHS-MXP to: (1) find multiple explanations per node; (2) discover
explanations of size x before reaching tree depth z; (3) and skip generating branches that cannot
lead to valid explanations. Thanks to the third property, the algorithm can determine that all
possible explanations have already been found and terminate even before the whole search
space has been explored.

3. CATS solver

CATS (Comenius Abduction Team Solver) is a new version of the MHS-MXP solver, the original
Java implementation of MHS-MXP [28] that also supported Reiter’s MHS algorithm. It introduces
significant changes to the code-base and functionality, most notably, a wider collection of
abduction algorithms.

We implemented RC-Tree and HST, adapting them to the context of ABox abduction for
the first time. Analogously to MHS-MXP being based on MHS, we also "hybridized" RCT
and HST, introducing two brand new algorithms: RCT-MXP and HST-MXP. Additionally, we
implemented the two fast, but incomplete methods, QuickXplain and MergeXplain, which
were already present in the code as components of MHS-MXP. This brings the total number of
available algorithms to 8.

The solver uses the OWL API to delegate consistency checks to an external reasoner. In the
case of a successful consistency check, the algorithms require a representation of a model found
by the reasoner. This functionality is currently implemented only by JFact [28].

3.1. Usage

An abduction problem and run parameters (such as the algorithm to be used, the abducibles,
etc.) can be passed to the solver using either of the following: (1) a structured input file and
a command-line application; (2) a graphical application; (3) a programmatical Java API [40].
The explanations found are saved into log files. Unlike the previous version, CATS log files
track detailed statistics about the solver’s run, such as memory used, counts of created nodes,
branches, prunings, consistency checks, etc.

Abducibles can be set either directly or by specifying allowed individuals and concepts. If
none are provided, all combinations of C'(a) and —=C'(a) from the background knowledge are
used; negations can be disabled to reduce their number. Solver performance depends heavily on
abducible size, which increases computational load. Additionally, MHS-MXP has been shown
to perform poorly with negations, as MXP identifies any set containing both C'(a) and —=C'(a)
as a possible explanation [28].

3.2. Implementation

The MHS-MXP solver implementation kept the code of the two original algorithms in the
same class, differentiating between them with if-else blocks. This, however, made it hard

to reasonably extend the code. We reworked this basic approach using the composition-over-
inheritance [41] principle, creating a modular architecture where the solver’s behaviour is
composed of multiple objects realizing abstract interfaces.

The main interfaces are ITreeBuilder, which determines how the HS-tree is built, and
INodeProcessor, which handles what should occur in each node - i.e., a consistency check,
an MXP or QXP call. Consequently, any algorithm can be trivially hybridized by combining
its tree builder with the MXP node processor. Simultaneously, the RootOnlyTreeBuilder
class, used in the MXP and QXP implementation, can be used to run an operation just once.
This provides the flexibility to abstract away from the HS-tree and implement any abduction
algorithm with inputs and outputs matching the interfaces.

Apart from refactoring the code-base, we also identified multiple bugs. Our main focus was
on the memory errors encountered in a past evaluation [31]. We discovered the culprit in the
process of storing negated models, which created large numbers of redundant objects. A new
approach is used in CATS, fixing the error and making the solver suitable for experiments on
bigger ontologies than before.

The implementation includes various optimizations. Most notably, MHS and HST, alongside
their hybrid versions, don’t have to remember the whole HS-tree — they only store unprocessed
nodes (those awaiting expansion and checks). In the case of MHS, this was already the case in
the MHS-MXP solver and was made possible thanks to the omission of Reiter’s third pruning
condition. We implemented multiple other optimizations to prevent redundant objects and
actions.

Some other changes in the new version include: more accurate time measuring; more reliable
time-out mechanism; and automated tests, previously fully absent, to verify the algorithms’
correctness and detect mistakes during development.

4. Evaluation

4.1. Methodology

We used the dataset of ABox abduction problems® from the previous evaluation [28]. The
abduction problems for the evaluation were grouped as S;—Ss, where each S; contains problems
with explanations of size i. All problems share the same background knowledge (the LUBM
ontology [36]) and have the same two sets of abducibles: {C(a),~C(a) | a € N;,C € N¢}
(with negations) and {C(a) | a € N;,C € N¢} (without negations), using the vocabulary
from the background knowledge and the given observation. The former set of abducibles is
considered “favourable” for the hybrids and the latter “unfavourable” (see Section 3.1). Later
groups are not inherently harder, but larger explanations mean more of the search space must
be explored and thus a deeper HS-tree must be built. Each problem has the same set of (desired)
explanations, regardless of whether negations are allowed or not.

For each group, 5 problems were selected. Each algorithm ran twice with and twice without
negations. The time limit was reduced from 4 to 2 hours, as in the previous evaluation, not
much of interesting data was obtained from the runs after 2 hours.

3Evaluation inputs: https://github.com/Comenius- Abduction-Team/CATS- Abduction-Solver/tree/main/in/d12025

https://github.com/Comenius-Abduction-Team/CATS-Abduction-Solver/tree/main/in/dl2025

The solver® was run on a server with the Ubuntu 24.04.1 operating system, using Java version
1.8.0_412. The server had 24 2.2 GHz processors and 64GB of RAM. Each run of the solver had
4GB of memory allocated to the JVM.

4.2. Results and Interpretation
4.2.1. Number of Explanations over Time

Figures 2 and 3 show the average number of explanations found over time without and with
negations, respectively. Each figure presents results for input groups S;-Ss and then all inputs
combined. The X-axis shows time (seconds), and each curve (one per algorithm) tracks the
cumulative number of explanations found (Y-axis), averaged over all runs in the group.

Each graph is scaled to highlight the most relevant data. The Y-axis adjusts to the graph’s
maximum value, while the X-axis ends at either the 7200-second limit or when all curves plateau.
An early X-axis cutoff does not imply early termination — only that no further explanations
were found. However, each curve ends at the maximal runtime encountered for that algorithm:
if it is present for the whole 2 hours, the algorithm hit the time-out at least once (see Section
4.2.2 for more details). If it breaks earlier, no run of that algorithm lasted longer than the curve’s
endpoint.

Without Negations. In S;, MXP and all hybrid algorithms found all explanations around
the same time, slightly ahead of base algorithms (MHS, HST, RC-Tree), confirming MXP’s
effectiveness at identifying all size-1 explanations in the root.

From S; on, base algorithms begin to lag. HST-MXP is also significantly slower by S; and
barely progressing in S5 (39.8 explanations by 5106.5s). MHS-MXP and RCT-MXP overall
perform similarly to each other: RCT-MXP is faster in S, and leads early in Ss, but plateaus
around 3000-4000s, allowing MHS-MXP to pull ahead. This suggests RCT-MXP may scale less
efficiently on deeper HS-trees due to its need to store and traverse the entire structure.

Among base algorithms, RC-Tree performed the best in S; and S3, while HST was the slowest
and least effective. None of the base algorithms found any explanations in S4 or Ss. This
highlights a limitation of previous evaluations: while they showed MHS could not guarantee all
size-4 explanations before timeout, they did not reveal whether any size-4 explanations were
found.

With Negations. With negations allowed, base algorithms were generally faster than hybrids
and MXP in S; and S,, echoing previous results — except for HST, which lagged behind all
complete algorithms in S;. In S;, it needed nearly two hours to match incomplete MXP’s output.
This reinforces HST as likely the least effective complete algorithm. Upon further inspection, we
found that HST usually assigned number indices to all of the abducibles right at the beginning
of its runs. As it generates combinations of numbered abducibles, this essentially turns HST
into a brute-force method, generating all possible combinations of abducibles without using
any strategy or heuristics.

*CATS version 2.0.0: https://github.com/Comenius- Abduction-Team/CATS- Abduction-Solver/releases/tag/v2.0.0

https://github.com/Comenius-Abduction-Team/CATS-Abduction-Solver/releases/tag/v2.0.0

—e— MHS —e— HST RCT QXP —&— MXP
—&— MHS-MXP —&— HST-MXP —&— RCT-MXP

all inputs S1 S2
60

300

40
200

100 2 20

08 0 0
0 1000 2000 3000 4000 5000 6000 7000 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 (] 50 100 150 200 250 300

S4 S5

300 1000

750

Sum of explanations found

200
500

S3
50
:: 100 250
0 ot 0

0 1000 2000 3000 4000 5000 6000 7000 0 1000 2000 3000 4000 5000 6000 7000 0 1000 2000 3000 4000 5000 6000 7000

Time (sec)

Figure 2: Average explanations found over time, cases without negations

Earlier evaluations portrayed MHS-MXP as consistently worse than MHS in cases with
negations. This setting is indeed disadvantageous for hybrids, leading to low explanation counts
and slow initial growth compared to cases without negations. However, from S; onward, hybrids
proved faster and more productive than base algorithms, which found no explanations of size 4
or 5. Though neither guaranteed completeness, hybrids clearly performed better.

Notably, HST-MXP - generally the weakest hybrid - led among hybrids during a 1000-2000s
window, and was the fastest in S, and S4. While RCT-MXP found slightly more total explanations,
HST-MXP may be more effective when prioritizing early results in a limited time. QXP failed to
find any explanations, illustrating its low effectiveness with non-trivial abducibles.

4.2.2. Early Termination

In practice, it matters not only how many explanations an algorithm finds, but also whether it
can terminate naturally instead of running unnecessarily long after all explanations are found.

QXP and MXP always terminated early, while all base algorithm runs and all hybrid runs
with negations hit the time-out. Only hybrids without negations occasionally finished early
(see Tablel). Since HST-MXP usually timed out, we focused on MHS-MXP and RCT-MXP. Their
average run times were similar, with RCT-MXP slightly faster in S, and Ss, and notably faster
in S;. As it also finished early in two more cases, it appears marginally more effective in this
respect.

Note that MXP can always find all explanations of size 1. This means that in S; cases, the
hybrids are able to find all explanations in their root and ideally should terminate almost

—e— MHS —e— HST RCT QXP —&— MXP
—&— MHS-MXP —&— HST-MXP —&— RCT-MXP

S1
6
4
2
0
0 5 10 15 20 2
S4
30
40
30 20
20
10
10

Figure 3: Average explanations found over time, cases with negations

all inputs

S2

40

20

]
=)
=)
i)
1%}
[=]
o
B 0144
g 0 1000 2000 3000 4000 5000 6000 7000 5 0 1000 2000 3000 4000 5000 6000 7000
3]
5
o S3 S5
>
5]
o
o
5
wn
0 & 0 &
0 1000 2000 3000 4000 5000 6000 7000 0 1000 2000 3000 4000 5000 6000 7000 0 1000 2000 3000 4000 5000 6000 7000
Time (sec)

Table 1
Number of runs of hybrid algorithms that ended before time-out and average finish time (sec) of MHS-
MXP and RCT-MXP runs that terminated before the time limit

Number of runs ended before time-out | Avg time before time-out
Input group | MHS-MXP | HST-MXP | RCT-MXP | MHS-MXP | RCT-MXP
Sy 10 10 10 0.68 0.75
S, 10 0 10 9.76 9.04
S3 10 1 10 1205.04 391.07
Sy 8 0 10 1487.67 1744.87
Ss 2 0 2 767.51 667.75

immediately. However, negations in abducibles are in conflict with the hybrids’ ability to
terminate early, causing them to always hit time-out in S; with negations enabled. As it stands,
MXP is the only algorithm that could find all explanations and then terminate in S; with
negations.

4.2.3. Memory Usage

To plot memory usage over time, we recorded the average memory per HS-tree level. We applied
linear interpolation between checkpoints for each run, then averaged the results across all runs
- separately for cases with and without negations. Input groups were not distinguished, as their
differences were minimal.

—e— MHS o— HST RCT QXP —&— MXP
—&— MHS-MXP —a&— HST-MXP —=&— RCT-MXP

negations no negations

~—~
m
S 1400 1400
o
= 1200 1200
=
"~ 1000 1000
>
)
Q -4 &
e
S 800 800
w
S 600 600 pu
E\. @
g 400 400
[«#]
200 200
E L J
0 0 1000 2000 3000 4000 5000 6000 7000 0 0 1000 2000 3000 4000 5000 6000 7000
Time (sec)

Figure 4: Average memory used by the Java Virtual Machine over time

The methodology is reflected in the graphs: cases with negations show smooth curves due to
longer times needed to complete tree levels, resulting in fewer records. Most records appear
early or at timeout, with the rest interpolated. This is especially true for the curves that are
mostly straight (MHS, HST and HST-MXP with negations; all base algorithms without negations)
— these algorithms had almost no records between 1000 seconds and the timeout.

Without negations, faster level completions yield more real data, producing more uneven
curves. RC-Tree and RCT-MXP, which revisit levels frequently, have the jaggedest curves.

Without negations, algorithms fall into three groups: RCT(-MXP) uses the most memory and
MHS(-MXP) slightly more than HST(-MXP). Interestingly, hybrids generally start less memory
demanding than their base versions, but the gap narrows over time. With negations, RC-Tree
and RCT-MXP are still the most memory-intensive, though the differences are smaller. Once
again, base algorithms use more memory than hybrids.

RCT(-MXP)’s high memory use is expected due to storing the full HS-tree and more data
per node. HST(-MXP)’s lower usage than MHS(-MXP) is surprising, possibly tied to pruning
behaviour (never duplicates a path) or model storage, though causes are unclear without
analysing the deeper metrics.

Although we mostly focus on the complete algorithms, it is practical to explore properties of
MXP in the S; cases, where it can always find all explanations. Table 2 shows average memory
usage of complete algorithms in S;. As MXP does not need to construct a tree, it is obviously
less memory-heavy than the others. The exception is the hybrids without negations. In those
cases, hybrids can terminate right after the root and essentially are the same as MXP.

5. Conclusions

We have described CATS Solver, a new ABox abduction solver for DL implementing eight
algorithms. CATS is based on the JFact reasoner as a black box, and it supports any DL

Table 2
Average total memory usage in the S; group (in MB)

Negations | MHS | HST | RCT | MHS-MXP | HST-MXP | RCT-MXP | MXP

no 767.31 | 667.74 | 953.83 152.75 153.78 151.92 152.44
yes 750.16 | 797.84 | 787.22 625.55 550.46 625.74 284.47

expressivity up to SROZQ/OWL 2. The modular implementation of the solver enables the
user to freely choose an algorithm best suited for a given application. For instance, if just one
of a few explanations needs to be found, the incomplete but fast methods QuickXplain and
MergeXplain may be used. If one wishes to find as many explanations as possible, one of the
five complete algorithms may be used. The solver offers a command-line and graphical user
interface, together with an API Java library.

The modular implementation of the algorithms also enables us to compare them. To this end,
we have conducted an empirical evaluation of all eight algorithms on a dataset derived from the
LUBM ontology. The results showed that out of the classic algorithms, including Reiter’s MHS,
Wotawa’s HST and Pill and Quaritch’s RC-Tree performed the best most of the time, followed
by MHS, with HST performing constantly worse than the two. As a more interesting result, all
three hybrid algorithms perform significantly better than any of the three classic versions. The
difference in performance of the hybrids is much more fine-grained with HST-MXP being the
slowest most of the time (but also the fastest in a small number of cases), while MHS-MXP and
RCT-MXP are much harder to distinguish between.

Importantly, contrary to the previous evaluation [28], the new evaluation methodology focus-
ing on the progress of explanations being found in time (and possibly a number of optimizations
that were implemented) helped us to clearly demonstrate that the hybrid algorithms are always
performing better, even on less favourable use cases.

In the future, we plan [42] to conduct a more detailed evaluation on real-world ontologies. The
performance of the solver may also possibly be improved by integration with other reasoners
than JFact.

Acknowledgments

The authors would like to express their gratitude to Jan Kluka for his valuable insights and
helpful discussions. This research was funded by the EU NextGenerationEU through the
Recovery and Resilience Plan for Slovakia under the project No. 09105-03-V02-00064.

References

[1] C.S. Peirce, lllustrations of the logic of science VI: Deduction, induction, and hypothesis,
Popular Science Monthly 13 (1878) 470-482.

[2] C. Elsenbroich, O. Kutz, U. Sattler, A case for abductive reasoning over ontologies, in:
Proceedings of the OWLED*06 Workshop on OWL: Experiences and Directions, Athens,

6]

GA, US, volume 216 of CEUR-WS, CEUR-WS.org, 2006. URL: https://ceur-ws.org/Vol-216/
submission_25.pdf.

S. Colucci, T. D. Noia, E. D. Sciascio, F. M. Donini, M. Mongiello, Concept abduction and
contraction in description logics, in: Proceedings of the 2003 International Workshop
on Description Logics (DL2003), Rome, Italy September 5-7, 2003, volume 81 of CEUR
Workshop Proceedings, CEUR-WS.org, 2003. URL: https://ceur-ws.org/Vol-81/donini.pdf.
M. Bienvenu, Complexity of abduction in the ££ family of lightweight description logics,
in: Principles of Knowledge Representation and Reasoning: Proceedings of the Eleventh
International Conference, KR 2008, Sydney, Australia, September 16-19, 2008, AAAI Press,
2008, pp. 220-230. URL: http://www.aaai.org/Library/KR/2008/kr08-022.php.

T.D. Noia, E. D. Sciascio, F. M. Donini, A tableaux-based calculus for abduction in expressive
description logics: Preliminary results, in: Proceedings of the 22nd International Workshop
on Description Logics (DL 2009), Oxford, UK, July 27-30, 2009, volume 477 of CEUR-WS,
CEUR-WS.org, 2009. URL: https://ceur-ws.org/Vol-477/paper_52.pdf.

S. Klarman, U. Endriss, S. Schlobach, ABox abduction in the description logic ALC, Journal
of Automated Reasoning 46 (2011) 43-80. URL: https://doi.org/10.1007/s10817-010-9168-z.
doi:10.1007/S10817-010-9168-Z.

(7] J. Du, G. Qi, Y. Shen,]J. Z. Pan, Towards practical ABox abduction in large OWL DL

(9]

[10]

[11]

[12]

ontologies, in: Proceedings of the Twenty-Fifth AAAI Conference on Artificial Intelligence,
AAAI 2011, San Francisco, California, US, August 7-11, 2011, AAAI Press, 2011, pp. 1160-
1165. URL: https://doi.org/10.1609/aaai.v25i1.8070. doi:10.1609/AAAT.V2511.8070.

K. Halland, K. Britz, Abox abduction in ALC using a DL tableau, in: 2012 South African
Institute of Computer Scientists and Information Technologists Conference, SAICSIT ’12,
Pretoria, South Africa, ACM, 2012, pp. 51-58. URL: https://doi.org/10.1145/2389836.2389843.
doi:10.1145/2389836.2389843.

J.Du, G. Qi, Y. Shen, J. Z. Pan, Towards practical ABox abduction in large description logic
ontologies, Int. J. Semantic Web Inf. Syst. 8 (2012) 1-33. URL: https://doi.org/10.4018/jswis.
2012040101. doi:10.4018/JSWIS.2012040101.

J. Du, K. Wang, Y. Shen, A tractable approach to ABox abduction over description logic
ontologies, in: Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intelli-
gence, July 27-31, 2014, Québec City, Québec, Canada., AAAI Press, 2014, pp. 1034-1040.
URL: https://doi.org/10.1609/aaai.v28i1.8852. doi:10.1609/AAAT .V2811.8852.

J. Pukancova, M. Homola, Tableau-based ABox abduction for the ALCHQO description
logic, in: A. Artale, B. Glimm, R. Kontchakov (Eds.), Proceedings of the 30th International
Workshop on Description Logics, Montpellier, France, July 18-21, 2017, volume 1879
of CEUR Workshop Proceedings, CEUR-WS.org, 2017. URL: http://ceur-ws.org/Vol-1879/
paper11.pdf.

W. Del-Pinto, R. A. Schmidt, Forgetting-based abduction in ALC, in: Proceedings of
the Workshop on Second-Order Quantifier Elimination and Related Topics (SOQE 2017),
Dresden, Germany, volume 2013 of CEUR-WS, CEUR-WS.org, 2017, pp. 27-35. URL: https:
//ceur-ws.org/Vol-2013/paper13.pdf.

P. Koopmann, W. Del-Pinto, S. Tourret, R. A. Schmidt, Signature-based abduction for
expressive description logics, in: Proceedings of the 17th International Conference on
Principles of Knowledge Representation and Reasoning, KR 2020, Rhodes, Greece, 2020,

https://ceur-ws.org/Vol-216/submission_25.pdf
https://ceur-ws.org/Vol-216/submission_25.pdf
https://ceur-ws.org/Vol-81/donini.pdf
http://www.aaai.org/Library/KR/2008/kr08-022.php
https://ceur-ws.org/Vol-477/paper_52.pdf
https://doi.org/10.1007/s10817-010-9168-z
http://dx.doi.org/10.1007/S10817-010-9168-Z
https://doi.org/10.1609/aaai.v25i1.8070
http://dx.doi.org/10.1609/AAAI.V25I1.8070
https://doi.org/10.1145/2389836.2389843
http://dx.doi.org/10.1145/2389836.2389843
https://doi.org/10.4018/jswis.2012040101
https://doi.org/10.4018/jswis.2012040101
http://dx.doi.org/10.4018/JSWIS.2012040101
https://doi.org/10.1609/aaai.v28i1.8852
http://dx.doi.org/10.1609/AAAI.V28I1.8852
http://ceur-ws.org/Vol-1879/paper11.pdf
http://ceur-ws.org/Vol-1879/paper11.pdf
https://ceur-ws.org/Vol-2013/paper13.pdf
https://ceur-ws.org/Vol-2013/paper13.pdf

[18]

pp. 592-602. URL: https://doi.org/10.24963/kr.2020/59. doi:10. 24963 /KR.2020/59.

P. Koopmann, Signature-based abduction with fresh individuals and complex concepts
for description logics, in: Proceedings of the Thirtieth International Joint Conference on
Artificial Intelligence, IJCAI 2021, Virtual Event / Montreal, Canada, 19-27 August 2021,
ijcai.org, 2021, pp. 1929-1935. URL: https://doi.org/10.24963/ijcai.2021/266. doi:10 . 24963/
IJCAI.2021/266.

P. Lambrix, Completing and debugging ontologies: State-of-the-art and challenges in
repairing ontologies, ACM J. Data Inf. Qual. 15 (2023) 41:1-41:38. URL: https://doi.org/10.
1145/3597304. doi:10.1145/3597304.

K. Schekotihin, P. Rodler, W. Schmid, OntoDebug: Interactive ontology debugging plug-in
for Protégé, in: Foundations of Information and Knowledge Systems - 10th International
Symposium, FoIKS 2018, Budapest, Hungary, May 14-18, 2018, Proceedings, volume 10833
of LNCS, Springer, 2018, pp. 340-359. URL: https://doi.org/10.1007/978-3-319-90050-6_19.
doi:10.1007/978-3-319-90050-6_19.

F. Wei-Kleiner, Z. Dragisic, P. Lambrix, Abduction framework for repairing incomplete ££
ontologies: Complexity results and algorithms, in: Proceedings of the Twenty-Eighth AAAI
Conference on Artificial Intelligence, July 27 -31, 2014, Québec City, Québec, Canada.,
AAAI Press, 2014, pp. 1120-1127. URL: https://doi.org/10.1609/aaai.v28i1.8858. doi:10.
1609/AAAT.V2811.8858.

S. M. Rashid, J. P. McCusker, D. M. Gruen, O. Seneviratne, D. L. McGuinness, A con-
cise ontology to support research on complex, multimodal clinical reasoning, in: The
Semantic Web - 20th International Conference, ESWC 2023, Hersonissos, Crete, Greece,
May 28 - June 1, 2023, Proceedings, volume 13870 of Lecture Notes in Computer Sci-
ence, Springer, 2023, pp. 390-407. URL: https://doi.org/10.1007/978-3-031-33455-9_23.
doi:10.1007/978-3-031-33455-9_23.

C. Martini, Abductive reasoning in clinical diagnostics, in: L. Magnani (Ed.), Handbook of
Abductive Cognition, Springer, 2023, pp. 467-479. doi:10.1007/978-3-031-10135-9_
13.

M. Obeid, Z. Obeid, A. Moubaiddin, N. Obeid, Using description logic and ABox abduction
to capture medical diagnosis, in: Advances and Trends in Artificial Intelligence. From
Theory to Practice - 32nd International Conference on Industrial, Engineering and Other
Applications of Applied Intelligent Systems, IEA/AIE 2019, Graz, Austria, July 9-11, 2019,
Proceedings, volume 11606 of LNCS, Springer, 2019, pp. 376-388. URL: https://doi.org/10.
1007/978-3-030-22999-3_33. doi:10.1007/978-3-030-22999-3_33.

[21] J. Pukancova, M. Homola, Abductive reasoning with description logics: Use case in

[22]

[23]

medical diagnosis, in: Proceedings of the 28th International Workshop on Description
Logics (DL 2015), Athens, Greece, volume 1350 of CEUR-WS, CEUR-WS.org, 2015. URL:
https://ceur-ws.org/Vol-1350/paper-60.pdf.

D. Al-Darras, B. Al-Shboul, N. Obeid, Towards using ontology-based systems for ex-
plainable medical diagnosis in nutrition domain, in: 12th International Conference on
Information Technology, ICIT 2025, Amman, Jordan, May 27-30, 2025, IEEE, 2025, pp. 528—
533. URL: https://doi.org/10.1109/ICIT64950.2025.11049209. doi:10.1109/ICIT64950.
2025.110492009.

T. Hubauer, C. Legat, C. Seitz, Empowering adaptive manufacturing with interactive

https://doi.org/10.24963/kr.2020/59
http://dx.doi.org/10.24963/KR.2020/59
https://doi.org/10.24963/ijcai.2021/266
http://dx.doi.org/10.24963/IJCAI.2021/266
http://dx.doi.org/10.24963/IJCAI.2021/266
https://doi.org/10.1145/3597304
https://doi.org/10.1145/3597304
http://dx.doi.org/10.1145/3597304
https://doi.org/10.1007/978-3-319-90050-6_19
http://dx.doi.org/10.1007/978-3-319-90050-6_19
https://doi.org/10.1609/aaai.v28i1.8858
http://dx.doi.org/10.1609/AAAI.V28I1.8858
http://dx.doi.org/10.1609/AAAI.V28I1.8858
https://doi.org/10.1007/978-3-031-33455-9_23
http://dx.doi.org/10.1007/978-3-031-33455-9_23
http://dx.doi.org/10.1007/978-3-031-10135-9_13
http://dx.doi.org/10.1007/978-3-031-10135-9_13
https://doi.org/10.1007/978-3-030-22999-3_33
https://doi.org/10.1007/978-3-030-22999-3_33
http://dx.doi.org/10.1007/978-3-030-22999-3_33
https://ceur-ws.org/Vol-1350/paper-60.pdf
https://doi.org/10.1109/ICIT64950.2025.11049209
http://dx.doi.org/10.1109/ICIT64950.2025.11049209
http://dx.doi.org/10.1109/ICIT64950.2025.11049209

[24]

[25]

[26]

[29]

[30]

[31]

[32]

[33]

diagnostics: A multi-agent approach, in: Advances on Practical Applications of Agents
and Multiagent Systems — 9th International Conference on Practical Applications of
Agents and Multiagent Systems, PAAMS 2011, Salamanca, Spain, volume 88 of Advances
in Intelligent and Soft Computing, Springer, 2011, pp. 47-56. URL: https://doi.org/10.1007/
978-3-642-19875-5_6.d0i:10.1007/978-3-642-19875-5_6.

O. Gries, R. Moller, A. Nafissi, M. Rosenfeld, K. Sokolski, M. Wessel, A probabilistic
abduction engine for media interpretation based on ontologies, in: Web Reasoning
and Rule Systems - Fourth International Conference, RR 2010, Bressanone/Brixen, Italy,
September 22-24, 2010. Proceedings, volume 6333 of Lecture Notes in Computer Science,
Springer, 2010, pp. 182-194. URL: https://doi.org/10.1007/978-3-642-15918-3_15. doi:10.
1007/978-3-642-15918-3_15.

S. Colucci, T. D. Noia, E. D. Sciascio, F. M. Donini, M. Mongiello, Concept abduction
and contraction for semantic-based discovery of matches and negotiation spaces in an
e-marketplace, Electronic Commerce Research and Applications 4 (2005) 345-361. URL:
https://doi.org/10.1016/j.elerap.2005.06.004. doi:10.1016/J . ELERAP. 2005.06.004.

P. Rodler, How should I compute my candidates? A taxonomy and classification of
diagnosis computation algorithms, in: ECAI 2023 - 26th European Conference on Artificial
Intelligence, September 30 - October 4, 2023, Krakéw, Poland - Including 12th Conference
on Prestigious Applications of Intelligent Systems (PAIS 2023), volume 372 of Frontiers
in Artificial Intelligence and Applications, 10S Press, 2023, pp. 1986—1993. URL: https:
//doi.org/10.3233/FATA230490. doi:10.3233/FATA230490.

R. Reiter, A theory of diagnosis from first principles, Artificial intelligence 32 (1987) 57—
95. URL: https://doi.org/10.1016/0004-3702(87)90062-2. d0i:10.1016/0004-3702(87)
90062-2.

M. Homola, J. Pukancova, J. Boborova, I. Balintova, Merge, explain, iterate: A combination
of MHS and MXP in an ABox abduction solver, in: Logics in Artificial Intelligence - 18th
European Conference, JELIA 2023, Dresden, Germany, September 20-22, 2023, Proceedings,
volume 14281 of Lecture Notes in Computer Science, Springer, 2023, pp. 338—352. URL: https:
//doi.org/10.1007/978-3-031-43619-2_24. doi:10.1007/978-3-031-43619-2_24.

K. M. Shchekotykhin, D. Jannach, T. Schmitz, MergeXplain: Fast computation of multiple
conflicts for diagnosis, in: Proceedings of the Twenty-Fourth International Joint Conference
on Artificial Intelligence, I[JCAI 2015, Buenos Aires, Argentina, July 25-31, 2015, AAAI
Press, 2015, pp. 3221-3228. URL: http://ijcai.org/Abstract/15/454.

J. Pukancova, M. Homola, @ The AAA ABox abduction solver, Kunstliche In-
tell. 34 (2020) 517-522. URL: https://doi.org/10.1007/s13218-020-00685-4. doi:10. 1007/
S13218-020-00685-4.

J. Boborova, Optimization of the MHS-MXP algorithm, Master’s thesis, Comenius Univer-
sity in Bratislava, 2023.

R. Greiner, B. A. Smith, R. W. Wilkerson, A correction to the algorithm in Reiter’s theory of
diagnosis, Artif. Intell. 41 (1989) 79-88. URL: https://doi.org/10.1016/0004-3702(89)90079-9.
doi:10.1016/0004-3702(89)90079-9.

F. Wotawa, A variant of Reiter’s hitting-set algorithm, Inf. Process. Lett. 79 (2001) 45—
51. URL: https://doi.org/10.1016/S0020-0190(00)00166-6. doi:10.1016/S0020-0190(00)
00166-6.

https://doi.org/10.1007/978-3-642-19875-5_6
https://doi.org/10.1007/978-3-642-19875-5_6
http://dx.doi.org/10.1007/978-3-642-19875-5_6
https://doi.org/10.1007/978-3-642-15918-3_15
http://dx.doi.org/10.1007/978-3-642-15918-3_15
http://dx.doi.org/10.1007/978-3-642-15918-3_15
https://doi.org/10.1016/j.elerap.2005.06.004
http://dx.doi.org/10.1016/J.ELERAP.2005.06.004
https://doi.org/10.3233/FAIA230490
https://doi.org/10.3233/FAIA230490
http://dx.doi.org/10.3233/FAIA230490
https://doi.org/10.1016/0004-3702(87)90062-2
http://dx.doi.org/10.1016/0004-3702(87)90062-2
http://dx.doi.org/10.1016/0004-3702(87)90062-2
https://doi.org/10.1007/978-3-031-43619-2_24
https://doi.org/10.1007/978-3-031-43619-2_24
http://dx.doi.org/10.1007/978-3-031-43619-2_24
http://ijcai.org/Abstract/15/454
https://doi.org/10.1007/s13218-020-00685-4
http://dx.doi.org/10.1007/S13218-020-00685-4
http://dx.doi.org/10.1007/S13218-020-00685-4
https://doi.org/10.1016/0004-3702(89)90079-9
http://dx.doi.org/10.1016/0004-3702(89)90079-9
https://doi.org/10.1016/S0020-0190(00)00166-6
http://dx.doi.org/10.1016/S0020-0190(00)00166-6
http://dx.doi.org/10.1016/S0020-0190(00)00166-6

[34]

[35]

[38]

[39]

[40]

[41]

[42]

L. Pill, T. Quaritsch, RC-Tree: A variant avoiding all the redundancy in Reiter’s minimal
hitting set algorithm, in: 2015 IEEE International Symposium on Software Reliability Engi-
neering Workshops, ISSRE Workshops, Gaithersburg, MD, USA, November 2-5, 2015, IEEE
Computer Society, 2015, pp. 78—84. URL: https://doi.org/10.1109/ISSREW.2015.7392050.
doi:10.1109/ISSREW.2015.7392050.

U. Junker, QuickXplain: Preferred explanations and relaxations for over-constrained
problems, in: Proceedings of the Nineteenth National Conference on Artificial Intelligence,
Sixteenth Conference on Innovative Applications of Artificial Intelligence, July 25-29,
2004, San Jose, California, USA, AAAI Press / The MIT Press, 2004, pp. 167-172. URL:
http://www.aaai.org/Library/AAAI/2004/aaai04-027.php.

Y. Guo, Z. Pan, J. Heflin, LUBM: A benchmark for OWL knowledge base systems, Journal
of Web Semantics 3 (2005) 158—182. URL: https://doi.org/10.1016/j.websem.2005.06.005.
d0i:10.1016/J .WEBSEM. 2005.06.005.

M. Schmidt-Schauf}, G. Smolka, Attributive concept descriptions with complements,
Artificial intelligence 48 (1991) 1-26. URL: https://doi.org/10.1016/0004-3702(91)90078-X.
d0i:10.1016/0004-3702(91)90078-X.

F. Baader, D. Calvanese, D. L. McGuinness, D. Nardi, P. F. Patel-Schneider (Eds.), The
Description Logic Handbook: Theory, Implementation, and Applications, Cambridge
University Press, 2003.

S. Rudolph, Foundations of description logics, in: Reasoning Web. Semantic Tech-
nologies for the Web of Data - 7th International Summer School 2011, Galway, Ire-
land, August 23-27, 2011, Tutorial Lectures, volume 6848 of Lecture Notes in Computer
Science, Springer, 2011, pp. 76-136. URL: https://doi.org/10.1007/978-3-642-23032-5_2.
doi:10.1007/978-3-642-23032-5_2.

J. Kloc, M. Homola, J. Pukancova, DL abduction API v2 and GUI interface (extended
abstract), in: Proceedings of the 36th International Workshop on Description Logics
(DL 2023) co-located with the 20th International Conference on Principles of Knowledge
Representation and Reasoning and the 21st International Workshop on Non-Monotonic
Reasoning (KR 2023 and NMR 2023)., Rhodes, Greece, September 2-4, 2023, volume 3515
of CEUR Workshop Proceedings, CEUR-WS.org, 2023. URL: https://ceur-ws.org/Vol-3515/
abstract-15.pdf.

E. Gamma, R. Helm, R. Johnson, J. M. Vlissides, Design Patterns: Elements of Reusable
Object-Oriented Software, Addison-Wesley Professional, 1994.

J. Boborova, J. Kloc, M. Homola, J. Pukancova, On the way to diverse datasets for evaluating
ABox abduction algorithms (extended abstract), in: Proceedings of the 38th International
Workshop on Description Logics (DL 2025), Opole, Poland, September 3-6, 2025, 2025. To
appear.

https://doi.org/10.1109/ISSREW.2015.7392050
http://dx.doi.org/10.1109/ISSREW.2015.7392050
http://www.aaai.org/Library/AAAI/2004/aaai04-027.php
https://doi.org/10.1016/j.websem.2005.06.005
http://dx.doi.org/10.1016/J.WEBSEM.2005.06.005
https://doi.org/10.1016/0004-3702(91)90078-X
http://dx.doi.org/10.1016/0004-3702(91)90078-X
https://doi.org/10.1007/978-3-642-23032-5_2
http://dx.doi.org/10.1007/978-3-642-23032-5_2
https://ceur-ws.org/Vol-3515/abstract-15.pdf
https://ceur-ws.org/Vol-3515/abstract-15.pdf

	1 Introduction
	2 Preliminaries
	2.1 Description Logics
	2.2 Abduction
	2.2.1 Reiter's Minimal Hitting Set Algorithm
	2.2.2 RC-Tree Algorithm
	2.2.3 HST Algorithm
	2.2.4 MHS-MXP Algorithm

	3 CATS solver
	3.1 Usage
	3.2 Implementation

	4 Evaluation
	4.1 Methodology
	4.2 Results and Interpretation
	4.2.1 Number of Explanations over Time
	4.2.2 Early Termination
	4.2.3 Memory Usage

	5 Conclusions

