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Abstract
Metamodelling in ontologies enables the structured representation of complex domains by defining relationships
between concepts across multiple levels of abstraction. Subsumption, a core relation in hierarchical reasoning,
provides a strong foundation for organizing ontological knowledge. In this work, we build on an extended form
of higher-order description logic, denoted ℋℐℛ𝒮*(ℒ), which supports metamodeling through two semantically
fixed roles: instanceOf and subClassOf . These roles explicitly enforce meta-level constraints, allowing for a
richer and more expressive representation of both hierarchical and meta-level concepts. While the logic has
four known variants with three shown to be decidable, the decidability of the full set-theoretical semantics
of the subClassOf relation for all concepts remains open. This work investigates the decidability of the full
set-theoretical semantics of the subClassOf relation for all concepts, denoted as ℋℐℛ𝒮𝒮𝒜(ℒ) for arbitrary base
DL, ℒ by seeking to align it with well-established decidable fragments of first-order logic.
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1. Introduction

Ontologies are engineering artifacts that systematically model entities and relationships within a
domain, providing a structured framework for representing and understanding its knowledge. By
defining concepts, objects, or events and their relationships, ontologies enable consistent communication,
reasoning, and interoperability between systems. These frameworks are often formalized using logics,
such as description logics (DLs), which allow for representing both extensional (instance-based) and
intensional (concept-based) knowledge. For example, the axiom 𝐴 ⊑ 𝐵 asserts that every instance of 𝐴
is also an instance of 𝐵, while 𝐴(𝑎) states that individual 𝑎 is an instance of 𝐴. The description logic
𝒮ℛ𝒪ℐ𝒬(𝒟) underpins OWL 2 DL, the Web Ontology Language [1, 2].

Metamodelling in ontologies enhances semantic representation by allowing concepts and roles to also
be treated as individuals, enabling structured modeling of complex domains. For instance, in biological
taxonomy, Melman is an instance of Giraffa Camelopardalis, which itself can be further classified in
the category Taxon. This illustrates how metamodelling supports multi-level classification. OWL 2
introduces punning, a metamodelling technique that permits a name to function simultaneously as
an individual, concept, and role, while the reasoner treats each use as semantically distinct [3]. An
important focus in this area involves addressing the constraints required for instantiation and subclass
relations, features that standard description logics cannot accommodate. While OWL Full permits
restrictions on rdf:type and rdfs:subClassOf, OWL Full is undecidable as demonstrated by Motik
[4]. To address the challenges of metamodelling, various higher-order description logics (DLs) have been
proposed, typically grouped by their semantic frameworks. The first group [5, 6, 7, 4] adopts HiLog-style
semantics [8], utilized in RDF. In this approach, each entity name is treated as an intension—an abstract
representation of the entity’s internal meaning. Extensions of concepts and roles are then assigned
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to these intensions. The second group [9, 10, 11] is based on Henkin’s general semantics [12] for
higher-order logic. Under this framework, concepts are directly interpreted as sets, meta-concepts as
sets of sets, and so on. This stronger semantic foundation provides distinct properties for reasoning.

Kubincová [7] introduced a decidable higher-order description logic framework,ℋℐℛ𝒮*(ℒ), building
on and extending the work of Glimm et al. [5]. In this work, decidability was proved via reduction to
first-order 𝒮ℛ𝒪ℐ𝒬, for the following two distinct semantic interpretations:

1. Non-set-theoretical semantics: Under this interpretation, if two concept intensions are related by
the meta-level relation subClassOf , then the extension of one concept is included in the extension
of the other, i.e., 𝐶,𝐷 : subClassOf implies 𝐶 ⊑ 𝐷, but not necessarily the converse. This seman-
tics was formalized in two variants of the logic: ℋℐℛ𝒮𝒩𝒩 (𝒮ℛ𝒪ℐ𝒬), which applies to named
concepts only, andℋℐℛ𝒮𝒩𝒜(𝒮ℛ𝒪ℐ𝒬), which generalizes the interpretation to all concepts.

2. Full set-theoretical semantics: Here, the meta-level relation subClassOf is interpreted equivalently
to the subsumption relation, i.e., 𝐶,𝐷 : subClassOf if and only if 𝐶 ⊑ 𝐷. This stricter semantics
was applied only to named concepts and is captured in the logicℋℐℛ𝒮𝒮𝒩 (𝒮ℛ𝒪ℐ𝒬).

These logics enhance expressivity while preserving decidability by incorporating two
fixed, semantically interpreted roles, instanceOf and subClassOf , to explicitly capture in-
stantiation and subsumption within ontologies. Key features of the framework include:
(1) HiLog-style semantics[6]; (2) typed entity separation: individuals, concepts, and roles are strictly
distinguished; (3) flexible typing of concept and role extensions.

In this work, we extend the approach of Kubincová [7] to support metamodeling with full set-
theoretical semantics across all concepts. Building on their framework, we introduce a higher-order
extension namedℋℐℛ𝒮𝒮𝒜(𝒮ℛ𝒪ℐ𝒬), which captures intentional and extensional subsumption for
all concepts at the meta-level. In this setting, the role subClassOf is semantically interpreted over all
concept individuals and defined to correspond to the instance-level implication between the extensions
of their respective intensions.

While existing approaches to the decidability of metamodelled description logics have largely relied
on reductions to first-order representations in DL, as demonstrated in works such as [6, 7, 10, 5, 13],
other approaches focus on adapting existing reasoning algorithms for standard description logics to
accommodate metamodelling constructs, notably the direct reasoning approach presented in [10].

Our approach is motivated by the observation that most description logics are semantic fragments of
FOL logic [14], and are often subsumed within known decidable fragments such as the two-variable
fragment FO2 [15] and the guarded fragment [16]. We explore whether the decidability ofℋℐℛ𝒮𝒮𝒜(ℒ)
can be achieved by seeking to align it to some decidable fragment of FOL. In particular, we examine
more expressive and recent decidable fragments such as the three-variable fragment FO3

− [17], the
Triguarded Fragment (TGF) [18], and Maslov’s class𝒦 [19]. We present our findings on the applicability
of these fragments toℋℐℛ𝒮𝒮𝒜(ℒ), highlighting key compatibilities as well as identified limitations.

The main objectives of this work are as follows:

• To define the syntax and semantics of a higher-order description logic extended to support full set-
theoretical subsumption across all concepts. This logic, collectively referred to asℋℐℛ𝒮𝒮𝒜(ℒ),
provides a formal foundation for reasoning about both hierarchical (i.e., subsumption) and
instance-level relationships in a metamodelled domain.

• To examine the feasibility of reducing reasoning tasks in ℋℐℛ𝒮𝒮𝒜(ℒ) to established decid-
able fragments of FOL. Specifically, we aim to identify correspondences between the axioms of
ℋℐℛ𝒮𝒮𝒜(ℒ) and known decidable fragments of FOL, thereby delineating the logical expressive-
ness and computational boundaries of the logic.

The structure of this work is organized as follows. Section 1 provides an introduction and discusses
related work. In Section 2, we present an overview of some decidable fragments of FOL, which
form the basis for our later reductions. Section 3 introduces the decidable higher-order description
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logic ℋℐℛ(𝒮ℛ𝒪ℐ𝒬) [7, 20], and outlines its key semantic features. In Section 4, we focus on the
more expressive higher-order extensionℋℐℛ𝒮*(𝒮ℛ𝒪ℐ𝒬), with particular attention to the variant
ℋℐℛ𝒮𝒮𝒜(ℒ), whose decidability remains open for arbitrary base logic, 𝐿. Finally, Section 5 concludes
with a summary of our contributions and key findings.

2. First order logic

First-Order Logic (FOL), also known as predicate logic, is a formal system that extends propositional
logic to provide a robust framework for reasoning about objects, their properties, and the relationships
between them. Although FOL is generally undecidable, several important fragments of FOL have been
shown to be decidable. These fragments restrict the use of variables, quantifiers, or functions in specific
ways that ensure decidability while retaining some expressive power. In our research, we investigated
some of these decidable fragments, to determine the formal verification of the decidability of our logic.

Notations

In this work, we use lowercase letters such as 𝑥, 𝑦, 𝑧, etc., to denote variables, and letters such as 𝑎, 𝑏,
𝑐, etc., to denote constants. Terms are either variables, constants, or the result of applying a function
symbol to other terms. They denote elements of the domain. Predicate symbols are represented by
uppercase letters such as 𝑃 , 𝑄, 𝑅, or descriptive names like subClassOf , instanceOf , etc. A predicate of
arity 𝑛 forms an atomic formula when applied to 𝑛 terms (e.g., 𝑅(𝑥, 𝑦)). Universal role (U) refers to the
binary predicate U(𝑥, 𝑦) denoting the set of all pairs of domain elements. Atomic formulas are formulas
of the form 𝑃 (𝑡1, . . . , 𝑡𝑛), where 𝑃 is an 𝑛-ary predicate symbol and 𝑡1, . . . , 𝑡𝑛 are terms. Formulas are
built from atomic formulas using logical connectives (¬, ∧, ∨,→,↔) and quantifiers (∀, ∃). A variable
is bound if it appears within the scope of a quantifier. Otherwise, it is free. A formula without free
variables is called a sentence. A literal is an atomic formula or its negation.

2.1. Triguarded Fragment Of First Order Logic

The Triguarded fragment (TGF) of first-order logic, introduced by Rudolph and Simkus [18], generalizes
both the guarded fragment (GF) [21] and the two-variable fragment (FO2) [21]. The finite model theory
of TGF has been thoroughly investigated by Kieronski and Rudolph [22], who provided tight bounds
and explored its expressive capacity relative to other decidable fragments.

Definition 1. [18] The triguarded fragment (TGF) of first-order logic is defined as the smallest set of

formulae satisfying the following closure rules:

1. Every atomic formula belongs to TGF.

2. TGF is closed under propositional connectives: if 𝜙,𝜓 ∈ TGF, then ¬𝜙, 𝜙 ∧ 𝜓, and 𝜙 ∨ 𝜓 are also in

TGF.

3. If 𝑥 is a variable, and 𝜙 is a formula in TGF with |free(𝜙)| ≤ 2, then ∀𝑥𝜙 and ∃𝑥𝜙 also belong to

TGF.

4. If 𝑥̄ is a non-empty tuple of variables, 𝜙 ∈ TGF, 𝛾 is an atomic formula, and free(𝜙) ⊆ free(𝛾), then

∀𝑥̄(𝛾 → 𝜙) and ∃𝑥̄(𝛾 ∧ 𝜙) also belong to TGF.

The expressiveness of the Triguarded Fragment (TGF) goes beyond both the Guarded Fragment (GF)
and the two-variable fragment (FO2), as exemplified by the following formula, which does not fall into
either of those fragments[18]:

∀𝑥 ∀𝑦 (𝑅1(𝑥, 𝑎) ∧𝑅2(𝑦, 𝑏)→ ∃𝑧 𝑅3(𝑥, 𝑦, 𝑧, 𝑐)) .
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2.2. The Guarded Fragment With Universal Role (GFU)

Rudolph and Simkus [18] introduced the Guarded Fragment with Universal Role (GFU), an extension of
the classical Guarded Fragment (GF) designed to capture the expressiveness of the Triguarded Fragment
(TGF) while remaining within a guarded syntactic discipline. GFU augments GF by incorporating a
built-in binary predicate U ∈ NP, known as the universal role, whose interpretation is fixed as:

U𝐼 = Δ𝐼 ×Δ𝐼 for every interpretation 𝐼.

This means that U relates every pair of domain elements, enabling it to syntactically simulate unguarded
quantification by acting as a universal guard.

Definition 2 ([18]). GFU is the subset of TGF consisting of formulas that are constructed using only rules

(1), (2), and (4) from Definition 1, and which may include atomic formulas involving the predicate U.

The universal role U allows guarded quantification to mimic the flexibility of triguarded quantification.
Specifically, any TGF formula can be transformed into an equivalent GFU formula by replacing each
unguarded quantifier with a quantifier guarded by U.

Proposition 1 ([18]). For every TGF formula 𝜙, there exists a GFU formula 𝜙*
that can be computed in

polynomial time such that 𝜙 and 𝜙*
are logically equivalent. Furthermore, for any interpretation ℐ and

vocabulary NP(𝜙), the interpretations of 𝜙 and 𝜙*
coincide over NP(𝜙) ∪ {U}.

An example is the transformation of the formula in TGF into the following equivalent GFU formula
[18]:

∀𝑥 ∀𝑦 (U(𝑥, 𝑦)→ ((𝑅1(𝑥, 𝑎) ∧𝑅2(𝑦, 𝑏))→ ∃𝑧 𝑅3(𝑥, 𝑦, 𝑧, 𝑐)))

Theorem 1 (Complexity [22]). Deciding satisfiability of TGF and of GFU formulae without equality is

N2ExpTime-complete. The problem is NExpTime-complete under the assumption that predicate arities are

bounded by a constant.

TGF and GFU thus maintain decidability while offering greater expressive power. Notably, they also
allow the unrestricted use of constants. Although incorporating full equality into logical systems often
leads to undecidability, it appears feasible [18] to include equality atoms of the form 𝑥 = 𝑐, where
𝑐 is a constant, without affecting the known complexity bounds. This syntactic feature enables the
representation of the DL nominals construct.

2.3. FO3
− Fragment Of First-Order Logic

Fiuk and Kieronski [17] introduced the FO3
− fragment which contains the two-variable fragment FO2

of first-order logic with constants, but without equality, and allowed the use of three variables {𝑥, 𝑦, 𝑧}.
This fragment reach into the area of the FO3 but provide some restrictions on the use of quantifiers
pattern such as ∀∀∀, ∀∃∀, and ∀∀∃ which leads to undecidability in FO3.

Definition 3 ([17]). The set of FO3
− formulas is defined as the smallest set of formulas over variables 𝑥,

𝑦, and 𝑧, satisfying the following closure conditions:

1. Every literal involving at most one variable belongs to FO3
−.

2. FO3
− is closed under conjunction (∧) and disjunction (∨).

3. Let 𝑣 ∈ {𝑥, 𝑦, 𝑧}. If 𝜓 is a positive Boolean combination of FO3
− formulas and literals, then ∃𝑣 𝜓 is

in FO3
−.

4. Let 𝑣, 𝑣′ ∈ {𝑥, 𝑦, 𝑧} be distinct. If 𝜓 is a positive Boolean combination of FO3
− formulas with free

variables contained in {𝑣, 𝑣′}, and literals involving only 𝑣 and 𝑣′, then ∀𝑣 𝜓 is in FO3
−.
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5. Let 𝑣, 𝑣′ ∈ {𝑥, 𝑦, 𝑧} be any variables. If 𝜓 is a positive Boolean combination of FO3
− formulas with

at most one free variable, and literals that involve all of 𝑥, 𝑦, and 𝑧, then both ∃𝑣 ∀𝑣′ 𝜓 and ∀𝑣 ∀𝑣′ 𝜓
are in FO3

−.

Here, variables 𝑣 and 𝑣′ always range over the fixed set {𝑥, 𝑦, 𝑧}. The key syntactic restriction
imposed by Rule (5) is that formulas ending with a universal quantifier and binding subformulas
involving all three variables must use positive Boolean combinations where the subformulas have at
most one free variable. In contrast, existential quantification in Rule (3), and universal quantification
over subformulas with at most two free variables as in Rule (4), are allowed more liberally. As an
example, consider the following formula:

∀𝑥 ∀𝑦 (¬𝑅(𝑥, 𝑦) ∨ ∃𝑧 (𝑆(𝑥, 𝑧) ∧ 𝑆(𝑦, 𝑧) ∧ [¬𝑇 (𝑥, 𝑧, 𝑦) ∨ ∀𝑥𝑆(𝑥, 𝑧) ∨ ∃𝑥 ∀𝑦 (𝑇 (𝑧, 𝑦, 𝑥) ∧ 𝑃 (𝑦))]))

This belongs to the FO3
− as demonstrated in [17].

Theorem 2. [17] FO3
− has the finite (exponential) model property. The finite satisfiability problem ( i.e.,

satisfiability problem) for FO3
− is NExpTime-complete.

2.4. The Maslov’s Class 𝒦

The Maslov’s class, 𝒦 [19, 21] is a decidable extension of FO2. Notably, 𝒦 encompasses and generalizes
the normal forms of FO2 formulas. The class 𝒦 is defined over the language of first-order logic without
equality and without function symbols, but with constants symbols.

Let 𝜙 be a closed formula in negation normal form, and let 𝜓 be a subformula of 𝜙. The 𝜙-prefix of 𝜓
is the sequence of quantifiers in 𝜙 that bind the free variables of 𝜓. A 𝜙-prefix is said to be a terminal

𝜙-prefix if it is of the form:
∃𝑦1 . . . ∃𝑦𝑚∀𝑥1𝑄1𝑧1 . . . 𝑄𝑛𝑧𝑛,

where 𝑚,𝑛 ≥ 0 and each 𝑄𝑖 ∈ {∃,∀} for 1 ≤ 𝑖 ≤ 𝑛. The terminal part is the suffix ∀𝑥1𝑄1𝑧1 . . . 𝑄𝑛𝑧𝑛.
If the 𝜙-prefix contains only existential quantifiers (i.e., of the form ∃𝑦1 . . . ∃𝑦𝑚), then the terminal
𝜙-prefix is defined to be the empty sequence.

A closed formula 𝜙 in negation normal form belongs to the class 𝒦 if there exist 𝑘 ≥ 0 universal
quantifiers ∀𝑥1, . . . ,∀𝑥𝑘 in 𝜙 such that for every atomic subformula 𝜓 of 𝜙, the terminal 𝜙-prefix of 𝜓
satisfies one of the following conditions:

1. It has length at most 1;

2. It ends with an existential quantifier;

3. It is exactly of the form ∀𝑥1∀𝑥2 . . . ∀𝑥𝑘.

As an example, consider the following formula:

∀𝑥 ∀𝑦
(︀
mwc(𝑥, 𝑦)→

(︀
married(𝑥, 𝑦) ∧ ∃𝑧 (has_child(𝑥, 𝑧) ∧ has_child(𝑦, 𝑧))

)︀)︀
.

This formula belongs to the class 𝒦 since every atomic subformula satisfies one of the above conditions
on terminal prefixes[21].

Theorem 3. [19] Every satisfiable formula 𝜙 in 𝒦 admits a finite model of size 2𝒪(|𝜙|·log |𝜙|)
. Hence, the

satisfiability problem for 𝒦 is NExpTime-complete.

3. Instantiation Metamodelling inℋℐℛ(𝒮ℛ𝒪ℐ𝒬)
Kubincova et al. [20, 7] introduce and investigate the higher-order description logicℋℐℛ(𝒮ℛ𝒪ℐ𝒬),
which extends 𝒮ℛ𝒪ℐ𝒬 with basic metamodelling capabilities through HiLog-style semantics. In this
logic, the metamodelling capability includes the addition of the instanceOf role only (subClassOf role
for subsumption not included) for instantiation.
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Table 1
Syntax and Semantics ofℋℐℛ(𝒮ℛ𝒪ℐ𝒬)

Syntax ℋℐℛ(𝒮ℛ𝒪ℐ𝒬) Semantics

𝑅0 𝑅ℐℰ
0

𝑅− {(𝑦, 𝑥) | (𝑥, 𝑦) ∈ 𝑅ℰ}
U Δℐ ×Δℐ

𝑆 ·𝑄 𝑆ℰ ∘𝑄ℰ

instanceOf { (𝑥, 𝑦) | (𝑥, 𝑦) ∈ Δℐ ×Δℐ
C ∧ 𝑥 ∈ 𝑦ℰ }

𝐴 𝐴ℐℰ

¬𝐶 Δℐ ∖ 𝐶ℰ

𝐶 ⊓𝐷 𝐶ℰ ∩𝐷ℰ

{𝐵} {𝐵ℐ}
∃𝑅.𝐶 {𝑥 | ∃𝑦.(𝑥, 𝑦) ∈ 𝑅ℰ ∧ 𝑦 ∈ 𝐶ℰ }
⩾𝑛𝑅.𝐶 {𝑥 | #{ 𝑦 | (𝑥, 𝑦) ∈ 𝑅ℰ ∧ 𝑦 ∈ 𝐶ℰ } ≥ 𝑛 }
∃𝑅.Self {𝑥 | (𝑥, 𝑥) ∈ 𝑅ℰ }

𝐶 ⊑ 𝐷 𝐶ℰ ⊆ 𝐷ℰ

𝐵 : 𝐶 𝐵𝐼 ∈ 𝐶ℰ

𝑤 ⊑ 𝑅 𝑤ℰ ⊆ 𝑅ℰ

𝐵1, 𝐵2 : 𝑅 (𝐵𝐼
1 , 𝐵

𝐼
2) ∈ 𝑅ℰ

Dis(𝑃,𝑅) 𝑃 ℰ ∩𝑅ℰ = ∅
𝐵1, 𝐵2 : ¬𝑅 (𝐵𝐼

1 , 𝐵
𝐼
2) /∈ 𝑅ℰ

Definition 4. [20, 7] Let 𝑁 = 𝑁𝐼 ⊎𝑁𝐶 ⊎𝑁𝑅 represent a DL vocabulary such that instanceOf ∈ 𝑁𝑅.

The ℋℐℛ(𝒮ℛ𝒪ℐ𝒬) role expressions are defined as the smallest set constructed inductively to include

the expressions listed in the upper part of Table 1, where 𝑅0 ∈ 𝑁𝑅 ∖ {instanceOf, subClassOf,U}, 𝑅 is

an atomic or inverse role, and 𝑆 and 𝑄 are role expressions. Similarly,ℋℐℛ(𝒮ℛ𝒪ℐ𝒬) descriptions are

defined as the smallest set inductively generated to include the expressions in the middle part of Table 1,

where 𝐴 ∈ 𝑁𝐶 , 𝐵 ∈ 𝑁 , and 𝐶 and 𝐷 are descriptions, with 𝑅 being an atomic or inverse role.

Aℋℐℛ(𝒮ℛ𝒪ℐ𝒬) knowledge base 𝐾 is a finite set of axioms structured according to the forms shown

in the bottom part of Table 1, where 𝐵,𝐵1, 𝐵2 ∈ 𝑁 , 𝐶 and 𝐷 are descriptions, 𝑃 and 𝑅 are atomic or

inverse roles, and 𝑤 denotes a role chain.

Definition 5. [20, 7] An ℋℐℛ interpretation of a DL vocabulary 𝑁 with instanceOf ∈ 𝑁𝑅 is a triple

ℐ = (Δℐ , ·ℐ , ·ℰ) such that:

1. Δℐ = Δℐ
𝐼 ⊎Δℐ

𝐶 ⊎Δℐ
𝑅 where Δℐ

𝐼 , Δℐ
𝐶 , Δℐ

𝑅 are pairwise disjoint.

2. 𝑎ℐ ∈ Δℐ
𝐼 for each 𝑎 ∈ 𝑁𝐼 , 𝐴ℐ ∈ Δℐ

𝐶 for each 𝐴 ∈ 𝑁𝐶 , 𝑅ℐ ∈ Δℐ
𝑅 for each 𝑅 ∈ 𝑁𝑅.

3. For each 𝑅,𝑆 ∈ 𝑁𝑅 and 𝑅 ̸= 𝑆 (unique role assumption), 𝑅ℐ ̸= 𝑆ℐ
.

4. 𝑐ℰ ⊆ Δℐ
for each 𝑐 ∈ Δℐ

𝐶 , 𝑟ℰ ⊆ Δℐ ×Δℐ
for each 𝑟 ∈ Δℐ

𝑅.

Extensions of role expressions 𝑅ℰ
and descriptions 𝐶ℰ

are inductively defined according to Table 1.

Definition 6. [20, 7] An axiom 𝜙 is satisfied by a ℋℐℛ-interpretation ℐ (ℐ |= 𝜙) if ℐ satisfies the

respective semantic constraints from Table 1. A ℋℐℛ-interpretation ℐ is a model of 𝒦 (ℐ |= 𝒦) if ℐ
satisfies every axiom 𝜙 ∈ 𝒦. A concept 𝐶 is satisfiable in 𝒦 if there exists a model ℐ of 𝒦 such that

𝐶ℐ ̸= ∅ .

Decidability

Kubincova et. al.[20, 7] showed the decidability ofℋℐℛ(𝒮ℛ𝒪ℐ𝒬) via reduction to first-order 𝒮ℛ𝒪ℐ𝒬.
Their reduction was based on the work done by Glimm et al.[5]

6
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Definition 7 (First-Order Reduction). [7, 20] A DL vocabulary 𝑁 with instanceOf ∈ 𝑁𝑅 is reduced

into a DL vocabulary 𝑁1 := (𝑁𝐶
1 , 𝑁

𝑅
1 , 𝑁

𝐼
1 ) where 𝑁𝐶

1 = 𝑁𝐶 ⊎ {⊤𝐶 ,⊤𝑅}, 𝑁𝑅
1 = 𝑁𝑅, and 𝑁 𝐼

1 =
𝑁𝐼 ⊎ {𝑖𝐴 | 𝐴 ∈ 𝑁𝐶} ⊎ {𝑖𝑅 | 𝑅 ∈ 𝑁𝑅} for fresh names ⊤𝐶 ,⊤𝑅, 𝑖𝐴, and 𝑖𝑅 for all 𝐴 ∈ 𝑁𝐶 , 𝑅 ∈ 𝑁𝑅.

A givenℋℐℛ(𝒮ℛ𝒪ℐ𝒬) knowledge base 𝒦 in 𝑁 is reduced into an 𝒮ℛ𝒪ℐ𝒬 knowledge base 𝒦1 :=
Int(𝒦) ∪ InstSync(𝑁) ∪ Typing(𝑁) ∪ URA(𝑁) in 𝑁1, where:

• Int(𝐾) is obtained from 𝒦 by replacing each occurrence of 𝐴 ∈ 𝑁𝐶 and 𝑅 ∈ 𝑁𝑅 in a nominal or

on the left-hand side of a concept or (negative) role assertion by 𝑖𝐴 and 𝑖𝑅, respectively.

• InstSync(𝑁) consists of axioms 𝐴 ≡ ∃instanceOf.{𝑖𝐴} for all 𝐴 ∈ 𝑁𝐶 .

• Typing(𝑁) consists of axioms ⊤ ⊑ ∀instanceOf.⊤𝐶 , ⊤𝑅 ⊑ ¬⊤𝐶 , 𝑎 : ¬⊤𝐶 ⊓ ¬⊤𝑅, 𝑖𝑅 : ⊤𝑅, and

𝑖𝐴 : ⊤𝐶 for all 𝑎 ∈ 𝑁𝐼 , 𝐴 ∈ 𝑁𝐶 , and 𝑅 ∈ 𝑁𝑅.

• URA(𝑁) consists of axioms 𝑖𝑅 : ¬{𝑖𝑆} for all pairs of distinct role names 𝑅,𝑆 ∈ 𝑁𝑅.

The following theorem holds, and the corollary is implied.

Theorem 4. [20, 7] For anyℋℐℛ(𝒮ℛ𝒪ℐ𝒬) knowledge base𝒦 and any axiom𝜙 in a common vocabulary

𝑁 , we have 𝒦 |= 𝜙 ⇐⇒ 𝒦1 |= Int(𝜙) .

Corollary 1. [20, 7] Let a ℋℐℛ(𝒮ℛ𝒪ℐ𝒬) knowledge base 𝒦 be such that only simple roles occur in

cardinality restrictions. Concept satisfiability and entailment in aℋℐℛ(𝒮ℛ𝒪ℐ𝒬) knowledge base are

then decidable in N2ExpTime.

4. Subsumption metamodelling

Kubincová [7] extended instantiation metamodelling to subsumption metamodelling by introducing a
fixed subClassOf role inℋℐℛ𝒮*(𝒮ℛ𝒪ℐ𝒬). This allows instanceOf and subClassOf to be used as roles
at the meta-level, enabling expressive modeling of hierarchical relationships and supporting automated
inference over subclass structures. Kubincová [7] demonstrated the practical utility of her framework in
some domains like biological taxonomy, where complex hierarchies (e.g., Species, Genus, Family) must
be precisely represented. ℋℐℛ𝒮*(𝒮ℛ𝒪ℐ𝒬) supports non-set-theoretical subsumption for all concepts
and set-theoretical subsumption for named concepts, enhancing the expressivity of DL-based systems
beyond conventional capabilities. Subsumption metamodelling has both set-theoretical and non-set-
theoretical interpretations. In the set-theoretical approach, the relationship subClassOf is explicitly
defined by inclusion of the extension of one class within another, based on the sufficient condition of
subsumption, and the necessary condition focusing on the intended meaning of subClassOf:

∀𝑐∀𝑑 (∀𝑥 (instanceOf(𝑥, 𝑐)→ instanceOf(𝑥, 𝑑))↔ subClassOf(𝑐, 𝑑)) .

For non-set-theoretical approaches, subsumption is defined more loosely, focusing on the intended
meaning of classes rather than strict set inclusion. It is based on the necessary condition of subsumption:

∀𝑐∀𝑑 (subClassOf(𝑐, 𝑑)→ ∀𝑥 (instanceOf(𝑥, 𝑐)→ instanceOf(𝑥, 𝑑))) .

Kubincová [7] demonstrated the decidability of the non-set-theoretical approach for all concepts
and the set-theoretical approach for named concepts. Moreso, Kubincova highlighted the practical
significance of set-theoretical semantics in managing all-concept subsumptions, noting its essential
role in accurately representing complex relationships, particularly in biological taxonomies. The set-
theoretical semantics for all concepts also enables intuitive and logically sound entailments, such as
(1) ⊨ (2), and more complex inferences like (1, 3) ⊨ (4), thereby ensuring that implicit relationships
are properly captured within the reasoning framework.

7
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Species ⊑ ∃subClassOf.Genus Family ⊑ ∃subClassOf.Order
Genus ⊑ ∃subClassOf.Family Order ⊑ ∃subClassOf.Kingdom (1)

Species ⊑ ∃subClassOf.Order (2)

Zarafa : G. camelopardalis G. camelopardalis : Species (3)

Zarafa : ∃instanceOf.Kingdom (4)

Also, it allows to model that: if every instance of any species is an organism, ∃instanceOf.Species ⊑
Organism, then each species becomes a subconcept of the concept Organism, expressed as Species ⊑
∃subClassOf.{Organism}.

4.1. The description logicsℋℐℛ𝒮*(𝒮ℛ𝒪ℐ𝒬)

Kubincová et al. [7] introduced and proved the decidability of metamodelled description logics under non-
set-theoretical subsumption, specificallyℋℐℛ𝒮𝒩𝒩 (ℒ) andℋℐℛ𝒮𝒩𝒜(ℒ), which handle metamodeling
for named and all concepts, respectively, where ℒ is any description logic expressive up to 𝒮ℛ𝒪ℐ𝒬.
These variants are also applicable to the logic 𝒮ℛ𝒪ℐ𝒬 and satisfy the necessary condition for the
semantics of the subClassOf role. Moreover, they established the decidability of ℋℐℛ𝒮𝒮𝒩 (ℒ) for
ℒ expressive up to 𝒮ℛ𝒪ℐ𝒬, which extends the approach to set-theoretical subsumption for named
concepts and fulfills both the necessary and sufficient conditions for interpreting the subClassOf role.

4.2. Set-theoretical subsumption for all concepts,ℋℐℛ𝒮𝒮𝒜(𝒮ℛ𝒪ℐ𝒬)

Building on the work of Kubincová et al. [7] and adopting a similar nomenclature, we define the
metamodelled description logicℋℐℛ𝒮𝒮𝒜(ℒ). This logic extends full set-theoretical semantics to all

concepts, where ℒ is any logic expressive up to 𝒮ℛ𝒪ℐ𝒬. Additionally,ℋℐℛ𝒮𝒮𝒜(ℒ) enables a unified
treatment of the instanceOf and subClassOf relations across multiple meta-levels.

Definition 8 (ℋℐℛ𝒮𝒮𝒜 Syntax). Anℋℐℛ𝒮𝒮𝒜 vocabulary is a DL vocabulary𝒩 = 𝒩𝐶⊎𝒩𝑅⊎𝒩𝐼 such

that instanceOf , subClassOf ∈ 𝒩𝑅. The role expressions, concept descriptions, axioms, and knowledge bases

ofℋℐℛ𝒮𝒮𝒜(𝒮ℛ𝒪ℐ𝒬) in 𝒩 are defined identically to their respectiveℋℐℛ(𝒮ℛ𝒪ℐ𝒬) counterparts.

Definition 9 (ℋℐℛ𝒮𝒮𝒜 Semantics). An ℋℐℛ𝒮𝒮𝒜 interpretation of a ℋℐℛ𝒮𝒮𝒜 vocabulary 𝑁 is a

ℋℐℛ interpretation ℐ = (Δℐ , ·ℐ , ·ℰ) where additionally:

(a) For all 𝑐, 𝑑 ∈ Δℐ
𝐶 , (𝑐, 𝑑) ∈ subClassOf

ℐℰ
iff 𝑐ℰ ⊆ 𝑑ℰ .

The extension ofℋℐℛ𝒮𝒮𝒜 interpretation toℋℐℛ𝒮𝒮𝒜(𝒮ℛ𝒪ℐ𝒬) role expressions and descriptions,
satisfaction of axioms, model, satisfiability, etc., are defined analogously toℋℐℛ(𝒮ℛ𝒪ℐ𝒬).

For a fragmentℒ of 𝒮ℛ𝒪ℐ𝒬,ℋℐℛ𝒮𝒮𝒜(ℒ) denotes the respective fragment ofℋℐℛ𝒮𝒮𝒜(𝒮ℛ𝒪ℐ𝒬).

4.3. Investigating the decidability ofℋℐℛ𝒮𝒮𝒜(ℒ)

This section examines how decidable fragments of FOL could be leveraged to determine the decidability
of interpreting the subClassOf relation set-theoretically for all concepts inℋℐℛ𝒮𝒮𝒜(ℒ), as defined in
Definition 9, via a translation from description logic (DL) to FOL.

We choose the basic DL ℒ as 𝒜ℒ𝒞ℋ𝒪ℐ . The choice of 𝒜ℒ𝒞ℋ𝒪ℐ is due to the fact that most
decidable FOL are less expressive than 𝒮ℛ𝒪ℐ𝒬.

Rudolf [23] demonstrated the translation of the 𝒮ℛ𝒪ℐ𝒬 description logics to first-order logic with
the translation function 𝜏 . We apply the same translation to the DL𝒜ℒ𝒞ℋ𝒪ℐ as demonstrated in Table
2. An𝒜ℒ𝒞ℋ𝒪ℐ knowledge base is translated into a first-order theory 𝑇 , where concepts become unary
predicates, roles binary predicates, individuals constants, and axioms are mapped via the function 𝜏 .

8
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Table 2
Translation from 𝒜ℒ𝒞ℋ𝒪ℐ to FOL

𝒜ℒ𝒞ℋ𝒪ℐ Construct FOL Translation 𝜏

Role Translation 𝜏𝑅(𝑅, 𝑥𝑖, 𝑥𝑗)

Role name 𝑅 𝑅(𝑥𝑖, 𝑥𝑗)

Inverse role 𝑅− 𝑅(𝑥𝑗 , 𝑥𝑖)

Concept Translation 𝜏𝐶(𝐶, 𝑥𝑖)

Atomic concept 𝐴 𝐴(𝑥𝑖)

Top ⊤ true

Bottom ⊥ false

Nominal {𝑎1, . . . , 𝑎𝑛}
⋁︀

1≤𝑗≤𝑛 𝑥𝑖 = 𝑎𝑗
Negation ¬𝐶 ¬𝜏𝐶(𝐶, 𝑥𝑖)
Conjunction 𝐶 ⊓𝐷 𝜏𝐶(𝐶, 𝑥𝑖) ∧ 𝜏𝐶(𝐷,𝑥𝑖)
Disjunction 𝐶 ⊔𝐷 𝜏𝐶(𝐶, 𝑥𝑖) ∨ 𝜏𝐶(𝐷,𝑥𝑖)
Existential ∃𝑅.𝐶 ∃𝑥𝑖+1. 𝜏𝑅(𝑅, 𝑥𝑖, 𝑥𝑖+1) ∧ 𝜏𝐶(𝐶, 𝑥𝑖+1)

Universal ∀𝑅.𝐶 ∀𝑥𝑖+1. 𝜏𝑅(𝑅, 𝑥𝑖, 𝑥𝑖+1)→ 𝜏𝐶(𝐶, 𝑥𝑖+1)

Axiom Translation 𝜏(𝛼)

Role hierarchy 𝑅1 ⊑ 𝑅2 ∀𝑥1𝑥2.𝜏𝑅(𝑅1, 𝑥1, 𝑥2)→ 𝜏𝑅(𝑅2, 𝑥1, 𝑥2)

Concept inclusion 𝐶 ⊑ 𝐷 ∀𝑥0.𝜏𝐶(𝐶, 𝑥0)→ 𝜏𝐶(𝐷,𝑥0)

Assertion 𝐶(𝑎) 𝜏𝐶(𝐶, 𝑥0)[𝑥0/𝑎]

Assertion 𝑅(𝑎, 𝑏) 𝜏𝑅(𝑅, 𝑥0, 𝑥1)[𝑥0/𝑎][𝑥1/𝑏]

Individual equality 𝑎 ≈ 𝑏 𝑎 = 𝑏

Individual inequality 𝑎 ̸≈ 𝑏 ¬(𝑎 = 𝑏)

Lemma 1. [14] Let ℒ be a description logic, 𝒦1
a knowledge base formulated in ℒ, and 𝜑 an axiom. Then

the following equivalence holds:

𝒦1 ⊨ 𝜑 ⇐⇒ 𝑇 ⊨ 𝜏(𝜑),

where 𝑇 is the first-order theory corresponding to 𝒦1
under the translation 𝜏 .

For anℋℐℛ𝒮𝒮𝒜(𝒜ℒ𝒞ℋ𝒪ℐ) knowledge base, 𝒦, we construct a reduced form 𝒦1SA as follows (cf.
Def. 7):

𝒦1SA := 𝒦1 ∪ SubClassSync(𝐾)

where
𝒦1 := Int(𝒦) ∪ InstSync(𝑁) ∪ Typing(𝑁) ∪ URA(𝑁),

based on the reduction procedure used forℋℐℛ knowledge [7, 20]. The SubClassSync(K) axioms consist
of:

∃ subClassOf.⊤ ⊑ ⊤𝐶 ⊤ ⊑ ∀ subClassOf.⊤𝐶

with the full set interpretation of the subClassOf role.
The FOL translation 𝜏(𝒦1SA) of the first-order reduction 𝒦1SA except the full set-theoretic semantics

of subClassOf is expressible in some decidable fragments of FOL, such as TGF and GFU. In particular,
the presence of constants and partial equality (𝑥 = 𝑐) in TGF and GFU allows for the expression of the
InstSync axioms which require nominals. However, the absence of equality in Maslov’s class 𝒦 and
FO3

− hinders the translation of InstSync into these fragments. This issue can be remedied in Maslov’s
class 𝒦. Instead of equality, nominals in InstSync can be translated using substitution of variables by
constants, which are supported in 𝒦. Yet, FO3

− does not even admit constants.
We now examine the expressibility of the full set-theoretic semantics of subClassOf in some of these

decidable fragments of FOL discussed in section 2. In order to achieve the intended semantics, the
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translation of the subClassOf role is governed by the following bi-conditional:

∀𝑥 ∀𝑦 (subClassOf(𝑥, 𝑦)↔ ∀𝑧 (instanceOf(𝑧, 𝑥)→ instanceOf(𝑧, 𝑦))) (5)

which is given by the forward (→) implication:

∀𝑥 ∀𝑦 (subClassOf(𝑥, 𝑦)→ ∀𝑧 (instanceOf(𝑧, 𝑥)→ instanceOf(𝑧, 𝑦))) (6)

and the backward (←) implication given by:

∀𝑥 ∀𝑦 (∀𝑧 (instanceOf(𝑧, 𝑥)→ instanceOf(𝑧, 𝑦))→ subClassOf(𝑥, 𝑦)) (7)

This is logically equivalent to the following contrapositive form:

∀𝑥 ∀𝑦 (¬subClassOf(𝑥, 𝑦)→ ∃𝑧 (instanceOf(𝑧, 𝑥) ∧ ¬instanceOf(𝑧, 𝑦)))

The contrapositive of (7) is expressible in both Maslov’s class 𝒦 and the fragment FO3
−. This implies

that the backward implication (←) of (5) is expressible within these fragments. However, it remains
uncertain whether the forward implication (→) of (5) can also be expressed in them. Furthermore, it is
unclear whether either direction of (5) is expressible in the TGF (Triguarded Fragment) or the GFU
(Guarded Fragment with Universal Role).

Counterexample Predicate and Axiomatization

To facilitate reasoning about violations of the subClassOf relation, we introduce a ternary predicate
subClassOfCounterExample. The predicate subClassOfCounterExample(𝑧, 𝑥, 𝑦) holds implies that 𝑧
is a counterexample to 𝑥 being a subclass of 𝑦, i.e., 𝑧 is an instance of 𝑥 but not of 𝑦. This design is
motivated by:

• Constructive handling of negation: In fragments like TGF and GFU, direct expression of negated
universal implications (e.g., ¬∀𝑧(instanceOf(𝑧, 𝑥) → instanceOf(𝑧, 𝑦))) is syntactically disal-
lowed. By reifying such negations through a ternary predicate and expressing them using
existential quantifiers, we preserve the intended semantics within guarded logic.

• Model-theoretic transparency: The counterexample-based semantics aligns well with constructive
reasoning approaches and facilitates ontology debugging and explanation by making subclass
violations explicit.

This relationship is formally captured by the following axioms:

∀𝑥 ∀𝑦 (∃𝑧 subClassOfCounterExample(𝑧, 𝑥, 𝑦)↔ ¬subClassOf(𝑥, 𝑦)) (8)

∀𝑥 ∀𝑦 ∀𝑧 (subClassOfCounterExample(𝑧, 𝑥, 𝑦)↔ (instanceOf(𝑧, 𝑥) ∧ ¬instanceOf(𝑧, 𝑦))) (9)

The forward (→) implication of axiom (8) can be isolated as:

∀𝑥 ∀𝑦 (∃𝑧 subClassOfCounterExample(𝑧, 𝑥, 𝑦)→ ¬subClassOf(𝑥, 𝑦)) (10)

Axiom (10) is logically equivalent to the following formulation:

∀𝑥 ∀𝑦 (subClassOf(𝑥, 𝑦)→ ¬(∃𝑧 subClassOfCounterExample(𝑧, 𝑥, 𝑦))) (11)

The backward (←) implication of axiom (8) is given by:

∀𝑥 ∀𝑦 (¬subClassOf(𝑥, 𝑦)→ ∃𝑧 subClassOfCounterExample(𝑧, 𝑥, 𝑦)) (12)

The forward (→) of (9) is given by:

∀𝑥 ∀𝑦 ∀𝑧 (subClassOfCounterExample(𝑧, 𝑥, 𝑦)→ (instanceOf(𝑧, 𝑥) ∧ ¬instanceOf(𝑧, 𝑦))) (13)

while the backward (←) implication of (9) is given by:

∀𝑥 ∀𝑦 ∀𝑧 ((instanceOf(𝑧, 𝑥) ∧ ¬instanceOf(𝑧, 𝑦))→ subClassOfCounterExample(𝑧, 𝑥, 𝑦)) (14)

While formulas (10)–(13) are expressible within the TGF and GFU fragments, we are not certain
formula (14) is expressible in TGF or GFU and thus does not allow for the indirect expression of axiom (5)
within these fragments.

10
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4.4. Discussion

We analyze the reduction strategy and its translation to some decidable fragments of FOL. Axiom (7),
which captures semantic inclusion between universal instance inclusion and the subClassOf relation,
is expressible in Maslov’s class 𝒦 and the fragment FO3

−. This confirms that the backward direction
(←) of (5) is expressible in these fragments. However, the expressibility of the forward direction (→)
remains unclear. Likewise, it is uncertain whether either direction of (5) is expressible in the TGF or GFU
fragments. Nonetheless, the introduction of the subClassOfCounterexample predicate allows for the
derivation of (8) and (13), indirectly enabling the backward direction of (5) in TGF and GFU fragments.
Still, the status of (14) remains unresolved, casting doubt on full expressibility in TGF or GFU fragments.
The TGF fragment approximates the expressive power of 𝒜ℒ𝒞ℋ𝒪ℐ [24]. In contrast, Maslov’s class 𝒦
corresponds to the description logic 𝒜ℒ𝒞 extended with role conjunction, inverse roles, and positive
role composition, while explicitly excluding equality. Similarly, the FO3

− fragment [21] also extends
𝒜ℒ𝒞 with constructs comparable to those found in Maslov’s class 𝒦. Table 3 provides a summary of
the semantics of the subClassOf relation with respects to the fragments explored.

Table 3
Expressibility of subClassOf Semantics forℋℐℛ𝒮(ℒ) in Decidable Fragments of FOL

Fragment (←) of (5) (→) of (5) Constants Equality

𝒦 Yes Unclear Yes No
FO3

− Yes Unclear No No
TGF Yes with the counter-example predicate Unclear Yes Partially
GFU Yes with the counter-example predicate Unclear Yes Partially

5. Conclusion

We have explored the decidability of the higher-order description logicℋℐℛ𝒮𝒮𝒜(ℒ), instantiated for the
base logic 𝒜ℒ𝒞ℋ𝒪ℐ , which incorporates metamodelling capabilities through semantically fixed roles
for instantiation and subsumption. By introducing the ternary predicate subClassOfCounterExample,
we captured the counterexample-driven semantics of subclass relations in a form that is partially
expressible within the Triguarded Fragment (TGF) and the Guarded Fragment with Universal Role
(GFU). Our expressivity analysis demonstrated that these subclass semantics are partially expressible
within Maslov’s class 𝒦 and the fragment FO3

−. Consequently, the decidability of the higher-order
description logicℋℐℛ𝒮𝒮𝒜(ℒ) for an arbitrary base logic, ℒ remains an open question.
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