
Two Types of Definite Descriptions:
Theory and Implementation (Extended Abstract)
Michał Sochański1, Przemysław Andrzej Wałęga1,2 and Michał Zawidzki1

1University of Łódź
2Queen Mary University of London

Abstract
We investigate extensions of description logics with operators for definite descriptions—expressions
intended to uniquely refer to elements based on their properties. Building on recent developments in
both modal and description logics, we introduce two extensions of 𝒜ℒ𝒞, namely 𝒜ℒ𝒞𝜄ℓ and 𝒜ℒ𝒞𝜄𝑔 ,
incorporating definite description operators from recent literature. We compare their expressive power
and develop tableau-based decision procedures for both. Our ongoing work includes implementing
these tableaux and conducting experimental evaluations to assess their practical viability in knowledge
representation scenarios.

Keywords
Description Logics, Definite Descriptions, Tableau System

1. Introduction

In this ongoing research we study description logics with operators for definite descriptions,
that is, for expressions aiming to refer to a single element by stating its unique property. As an
example of such an expression, consider Bertrand Russell’s famous ‘the present king of France’,
which aims (unsuccessfully) to refer to a unique object [1]. Research on definite descriptions
has a longstanding tradition [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13] and, more recently, it has been
conducted within the area of Knowledge Representation [14, 15, 16]. In this setting, definite
descriptions are used for identifying objects in databases and for providing more informative
answers to queries [17, 18, 19, 20].

In particular, definite descriptions have recently been introduced to description [21] and
modal [22, 23] logics. The description logic 𝒜ℒ𝒞𝒪𝜄

𝑢 [21] extends 𝒜ℒ𝒞 with nominals, the
universal role, and concepts for definite descriptions, which are of the form {𝜄𝐶}. The extension
of {𝜄𝐶} is a singleton that contains the unique element of the model of which 𝐶 holds, or an
empty set, if such an element does not exist. The modal logic ℳℒ(DD) [22, 23], introduces a
different operator for definite descriptions, by allowing for operators of the form @𝜙. A formula
@𝜙𝜓, states that 𝜓 holds in the unique modal world which satisfies 𝜙.

Our current research aims to compare the above two types of definite descriptions in the
common setting of description logics. To this end, we introduce two extensions of 𝒜ℒ𝒞, namely
𝒜ℒ𝒞𝜄ℓ and 𝒜ℒ𝒞𝜄𝑔 which allow for definite descriptions in the style of 𝒜ℒ𝒞𝒪𝜄

𝑢 and ℳℒ(DD),
respectively. We study the expressive power of these description logics and introduce tableau

DL 2025: 38th International Workshop on Description Logics, September 3–6, 2025, Opole, Poland
© 2025 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

https://creativecommons.org/licenses/by/4.0
https://ceur-ws.org
https://ceur-ws.org

systems for them. Currently, we are working on an implementation of the tableaux and its
experimental evaluation.

2. Description Logics with Definite Descriptions

In what follows, we will briefly introduce the syntax and semantics of 𝒜ℒ𝒞𝜄ℓ and 𝒜ℒ𝒞𝜄𝑔 , as
well as 𝒜ℒ𝒞𝜄, which contains both.

As usual, let NC, NR, and NI be countably infinite and pairwise disjoint sets of concept names,
role names, and individual names, respectively. The grammar of 𝒜ℒ𝒞𝜄 concepts 𝐶 extends the
grammar of 𝒜ℒ𝒞 with two types of definite descriptions, namely {𝜄𝐶} and 𝜄𝐶.𝐷. The first aims
to represent the unique element that satisfies 𝐶 , whereas the second aims to state that 𝐷 holds
for the unique element satisfying 𝐶 . Hence, 𝒜ℒ𝒞𝜄 concepts are generated by the grammar

𝐶 := 𝐴 | ¬𝐶 | (𝐶 ⊓ 𝐶) | ∃𝑟.𝐶 | {𝜄𝐶} | 𝜄𝐶.𝐶,

for 𝐴 ∈ NC and 𝑟 ∈ NR. An 𝒜ℒ𝒞𝜄 concept inclusion (CI) is of the form 𝐶 ⊑ 𝐷, for any 𝒜ℒ𝒞𝜄
concepts 𝐶 and 𝐷. An 𝒜ℒ𝒞𝜄 term 𝜏 is of the form 𝑎 or 𝜄𝐶 , for 𝑎 ∈ NI, and 𝐶 being an 𝒜ℒ𝒞𝜄
concept. An 𝒜ℒ𝒞𝜄 assertion is either of the form 𝐶(𝜏) or 𝑟(𝜏1, 𝜏2), for terms 𝜏, 𝜏1, 𝜏2, concept
𝐶 , and 𝑟 ∈ NR. An 𝒜ℒ𝒞𝜄 ontology 𝒪 is a finite set of 𝒜ℒ𝒞𝜄 CIs and assertions.

The description logic 𝒜ℒ𝒞𝜄ℓ is the fragment of 𝒜ℒ𝒞𝜄 which allows for local definite descrip-
tions {𝜄𝐶}, but not for global 𝜄𝐶.𝐶 . Hence, the syntax is defined as for 𝒜ℒ𝒞𝜄, except that the
grammar of 𝒜ℒ𝒞𝜄ℓ concepts does not mention 𝜄𝐶.𝐶 . As a result, 𝒜ℒ𝒞𝜄ℓ corresponds to the
fragment of 𝒜ℒ𝒞𝒪𝜄

𝑢 without nominals and the universal role [18]. Description logic 𝒜ℒ𝒞𝜄𝑔 , in
turn, is the fragment of 𝒜ℒ𝒞𝜄 with only global descriptions, so it is obtained from 𝒜ℒ𝒞𝜄 by
deleting {𝜄𝐶} from the concepts and terms.

Semantics is obtained by extending the standard semantics of 𝒜ℒ𝒞. An interpretation is a
pair ℐ = (∆ℐ , ·ℐ), of a non-empty domain ∆ℐ and an interpretation function mapping atomic
concepts 𝐴 ∈ NC to subsets of ∆ℐ , roles 𝑟 ∈ NR to subsets of ∆ℐ ×∆ℐ , and individual names
𝑎 ∈ NI to elements in ∆ℐ . Function ℐ extends to complex 𝒜ℒ𝒞 concepts in a standard way,
and for the concepts with definite descriptions as follows:

({𝜄𝐶})ℐ :=

{︃
{𝑑}, if 𝐶ℐ = {𝑑}, for some 𝑑 ∈ ∆ℐ ,

∅, otherwise,

(𝜄𝐶.𝐷)ℐ :=

{︃
∆ℐ , if 𝐶ℐ = {𝑑} and 𝑑 ∈ 𝐷ℐ , for some 𝑑 ∈ ∆ℐ ,

∅, otherwise.

Satisfaction of concepts, axioms, and ontologies is defined in a standard way.

3. Expressive Power

In this section, we will compare the expressive power of 𝒜ℒ𝒞𝜄ℓ, 𝒜ℒ𝒞𝜄𝑔 , 𝒜ℒ𝒞𝜄, and 𝒜ℒ𝒞𝒪𝜄
𝑢.

First we observe that {𝜄𝐶} can be expressed as 𝐶 ⊓ 𝜄𝐶.⊤. On the other hand, {𝜄𝐶} can also be
expressed as 𝐴𝐶 ⊓ 𝜄𝐴𝐶 .⊤, for a fresh concept name 𝐴𝐶 , but we need to add axioms 𝐴𝐶 ⊑ 𝐶

and 𝐶 ⊑ 𝐴𝐶 . The first translation preserves equivalence of concepts, but is exponential. The
second is polynomial, but requires adding axioms, and does not preserve equivalence.

Proposition 1. There is an exponential equivalence-preserving translation of 𝒜ℒ𝒞𝜄ℓ to 𝒜ℒ𝒞𝜄𝑔
concepts, and a polynomial translation that maps 𝒜ℒ𝒞𝜄ℓ ontologies into 𝒜ℒ𝒞𝜄𝑔 ontologies that
conservatively extend the former.

In order to study further the expressive power, we will adequately tailor the standard notion
of bisimulation, so that it fits the new logics. To this end, we let Names(∆′, ℐ), for a subset
∆′ ⊆ ∆ℐ of the domain of ℐ , be the set of all 𝒜ℒ𝒞 concepts 𝐶 such that 𝐶ℐ = {𝑑} for some
𝑑 ∈ ∆′. Now, we define the bisimulations as follows.

Definition 2. An 𝒜ℒ𝒞𝜄 bisimulation between interpretations ℐ and 𝒥 is a standard 𝒜ℒ𝒞 bisim-
ulation 𝑍 ⊆ ∆ℐ ×∆𝒥 (i.e., it satisfies conditions Atom, Forth, and Back) which additionally
satisfies the new condition:

Names Names(∆ℐ , ℐ) = Names(∆𝒥 ,𝒥).

An 𝒜ℒ𝒞𝜄ℓ bisimulation is defined analogously with the caveat that Names is replaced by:

Namesℓ Names(𝐷𝑜𝑚(𝑍), ℐ) = Names(𝑅𝑛𝑔(𝑍),𝒥).

For ℒ ∈ {𝒜ℒ𝒞𝜄,𝒜ℒ𝒞𝜄ℓ} we write ℐ, 𝑑 ∼ℒ 𝒥 , 𝑒 if (𝑑, 𝑒) ∈ 𝑍 for some ℒ bisimulation 𝑍 between
ℐ and 𝒥 .

Example 3. We observe that some 𝒜ℒ𝒞𝜄ℓ bisimulations are not 𝒜ℒ𝒞𝜄 bisimulatons. Consider
ℐ1 and ℐ2 such that ∆ℐ1 = (𝑎, 𝑏) and 𝐴ℐ1 = {∅}, whereas ∆ℐ2 = (𝑐, 𝑑, 𝑒) and 𝐴ℐ2 = {𝑒}. The
relation 𝑍 = {(𝑎, 𝑐), (𝑏, 𝑑))} is an 𝒜ℒ𝒞𝜄ℓ bisimulation, but not an 𝒜ℒ𝒞𝜄 bisimulation.

It is worth observing that our bisimulations differ from those used for 𝒜ℒ𝒞𝒪𝜄
𝑢 by Artale et al.

[18], which rely on totality and “counting up to one”. We can show that indeed, their conditions
are too strong for 𝒜ℒ𝒞𝜄ℓ. The next result shows that our bisimulations behave similarly to
the case of 𝒜ℒ𝒞, that is, as intended. They preserve equivalence of concepts, and the opposite
implication holds for 𝜔-saturated interpretations.

Theorem 4. For all pointed interpretations (ℐ, 𝑑) and (𝒥 , 𝑒), and both ℒ ∈ {𝒜ℒ𝒞𝜄,𝒜ℒ𝒞𝜄ℓ}:

1. if (ℐ, 𝑑) ∼ℒ (𝒥 , 𝑒), then (ℐ, 𝑑) ≡ℒ (𝒥 , 𝑒),

2. if (ℐ, 𝑑) ≡ℒ (𝒥 , 𝑒) and ℐ,𝒥 are 𝜔-saturated, then (ℐ, 𝑑) ∼ℒ (𝒥 , 𝑒),

where (ℐ, 𝑑) ≡ℒ (𝒥 , 𝑒) means that both pointer interpretations satisfy the same ℒ-concepts.

We can use the above result to compare the expressive power of the described description
logics mentioned, as stated below. In the following theorem, 𝐴 ≤ 𝐵 means that each concept
of logic 𝐵 can be translated into an equivalent concept of logic 𝐴. The relations < and = can
be defined upon ≤ in a standard way.

Theorem 5. The following expressive power results hold: 𝒜ℒ𝒞𝜄ℓ < 𝒜ℒ𝒞𝜄𝑔 = 𝒜ℒ𝒞𝜄 and
𝒜ℒ𝒞𝒪𝜄

𝑢 ̸≤ 𝒜ℒ𝒞𝜄.

4. Tableau System

In this section we briefly introduce a tableau system for 𝒜ℒ𝒞𝜄, which provides us with a
terminating, sound, and complete reasoning procedure. The rules of the tableau are presented
in Figure 1. The main difference with respect to the standard tableau for 𝒜ℒ𝒞 is that we
introduce additional rules for global and local definite descriptions. For example, the rules for
local descriptions {𝜄𝐶} guarantee that if an element 𝑎 satisfies {𝜄𝐶}, then it also satisfies 𝐶 ,
and moreover, every other element 𝑎′ satisfying 𝐶 satisfies the same concepts as 𝑎 (intuitively,
𝑎′ and 𝑎 need to refer to the same element). Furthermore, if 𝑎 does not satisfy {𝜄𝐶}, then
either it does not satisfy 𝐶 , or some other element satisfies 𝐶 . Finally, the cut rule allows us to
determine if 𝐶 or ¬𝐶 holds in an arbitrary element, for any definite description {𝐶} occurring
on the branch. We are currently working on an implementation of the tableau system in Python
and its evaluation. In the basic form, the implementation will make it possible to check the
satisfiability of a set of formulas, as well as of an ABox and TBox, as optional elements, and to
inspect the model if it exists. We also intend to analyse the efficiency of our implementation
depending on various syntactic features of input formulas, in particular those related to both
kinds of definite descriptions. This will be done by generation of thousands of random formulas,
checking their satisfiability using our implementation, and gathering data, such as the running
times of the implementation on various inputs.

ABox rules:

(𝐴𝐵𝑜𝑥I)
𝑎 :𝐶∈𝐴𝐵𝑜𝑥

𝑎 :𝐶
(𝐴𝐵𝑜𝑥𝜄

I)
𝜄𝐶 :𝐷∈𝐴𝐵𝑜𝑥

𝑏𝐶 :{𝜄𝐶}, 𝑏𝐶 :𝐷
(𝐴𝐵𝑜𝑥𝑟)

𝑟(𝑎, 𝑎′)∈𝐴𝐵𝑜𝑥

𝑟(𝑎, 𝑎′)

(𝐴𝐵𝑜𝑥𝜄ℓ
𝑟)

𝑟(𝜄𝐶, 𝑎)∈𝐴𝐵𝑜𝑥

𝑏𝐶 :{𝜄𝐶}, 𝑟(𝑏𝐶 , 𝑎)
(𝐴𝐵𝑜𝑥𝜄𝑟

𝑟)
𝑟(𝑎, 𝜄𝐶) ∈ 𝐴𝐵𝑜𝑥

𝑏𝐶 :{𝜄𝐶}, 𝑟(𝑎, 𝑏𝐶)
(𝐴𝐵𝑜𝑥𝜄𝑏

𝑟)
𝑟(𝜄𝐶, 𝜄𝐷)∈𝐴𝐵𝑜𝑥

𝑏𝐶 :{𝜄𝐶}, 𝑏𝐷 :{𝜄𝐷}, 𝑟(𝑏𝐶 , 𝑏𝐷)

TBox rule:

(𝑇𝐵𝑜𝑥)
𝐶⊑𝐷∈𝑇𝐵𝑜𝑥

𝑎 :¬(𝐶 ⊓ ¬𝐷)

Clash rule:

(⊥)
𝑎 :𝐶, 𝑎 :¬𝐶

⊥

Propositional rules:

(¬¬)
𝑎 :¬¬𝐶

𝑎 :𝐶
(⊓)

𝑎 :𝐶 ⊓ 𝐷

𝑎 :𝐶, 𝑎 :𝐷
(¬⊓)

𝑎 :¬(𝐶 ⊓ 𝐷)

𝑎 :¬𝐶 | 𝑎 :¬𝐷

Role rules:

(∃𝑟)1
𝑎 :∃𝑟.𝐶

𝑏 :𝐶, 𝑟(𝑎, 𝑏)
(¬∃𝑟)

𝑎 :¬∃𝑟.𝐶, 𝑟(𝑎, 𝑎′)

𝑎′ :¬𝐶

Global definite description rules:

(𝜄
𝑔
1)

2 𝑎 : 𝜄𝐶.𝐷

𝑏 :𝐶, 𝑏 :𝐷
(𝜄

𝑔
2)

𝑎 : 𝜄𝐶.𝐷, 𝑎′ :𝐶, 𝑎′′ :𝐶, 𝑎′ :𝐸

𝑎′′ :𝐸
(¬𝜄𝑔)3

𝑎 :¬𝜄𝐶.𝐷

𝑎′ :¬𝐶 | 𝑎′ :¬𝐷 | 𝑏 :𝐶, 𝑏 :𝐴
𝑔
𝐶

,

𝑏′ :𝐶, 𝑏 :¬𝐴
𝑔
𝐶

(𝑐𝑢𝑡𝑔𝜄)
𝑎 : 𝜄𝐶.𝐷

𝑎′ :𝐶 | 𝑎′ :¬𝐶

Local definite description rules:

(𝜄ℓ1)
𝑎 :{𝜄𝐶}
𝑎 :𝐶

(𝜄ℓ2)
𝑎 :{𝜄𝐶}, 𝑎′ :𝐶, 𝑎′′ :𝐶, 𝑎′ :𝐷

𝑎′′ :𝐷
(¬𝜄ℓ)4

𝑎 :¬{𝜄𝐶}
𝑎 :¬𝐶 | 𝑎 :𝐴𝐶 ,

𝑏 :𝐶, 𝑏 :¬𝐴𝐶

(𝑐𝑢𝑡ℓ𝜄)
𝑎 :{𝜄𝐶}

𝑎′ :𝐶 | 𝑎′ :¬𝐶

1 The rule is not applied if on the branch there is an individual 𝑎′ such that for any concept 𝐸 ∈ {𝐶} ∪ {¬𝐷 | 𝑎 : ¬∃𝑟.𝐷 ∈ ℬ}, 𝑎′ : 𝐸 ∈ ℬ.

2 The rule is not applied if on the branch there is an individual 𝑎′ such that either (1) 𝑎′ : 𝐶 ∈ ℬ and 𝑎′ : 𝐷 /∈ ℬ or (2) 𝑎′ : 𝐶, 𝑎′ : 𝐷 ∈ ℬ. In the former case
𝑎′′ : 𝐷 is added to ℬ, where 𝑎′′ is the first individual that occurred on ℬ such that 𝑎′′ : 𝐶 ∈ ℬ. In the latter case no action is taken.
3 𝐴

𝑔
𝐶

is an atomic concept not occurring in the input concept; if 𝐴𝑔
𝐶

or ¬𝐴
𝑔
𝐶

occurs on the branch, the rule (¬𝜄) cannot be applied to any premise of the form
𝑎 : ¬𝜄𝐶.𝐸 occurring on this branch, where 𝐸 is an arbitrary concept.
4 𝐴𝐶 is an atomic concept not occurring in the input concept; if there is an individual 𝑎′ on the branch such that 𝑎′ : ¬𝐴𝐶 occurs on the branch, then in the left branch
of the rule only the expression 𝑎 : 𝐴𝐶 is introduced to the branch.

Figure 1: Rules of the tableau calculi for 𝒜ℒ𝒞𝜄

Acknowledgments

This research is funded by the European Union (ERC, ExtenDD, project number: 101054714).
Views and opinions expressed are however those of the authors only and do not necessarily
reflect those of the European Union or the European Research Council. Neither the European
Union nor the granting authority can be held responsible for them.

References

[1] B. Russell, On denoting, Mind 14 (1905) 479–493.
[2] F. J. Pelletier, B. Linsky, What is Frege’s theory of descriptions, in: G. Imagure, B. Linsky

(Eds.), On Denoting: 1905–2005, Philosophia, München, 2005, pp. 195–250.
[3] D. Hilbert, P. Bernays, Grundlagen der Mathematik I, volume 40, 1968.
[4] J. B. Rosser, Logic for Mathematicians, 1978.
[5] K. Lambert, Free logic and definite descriptions, in: E. Morscher, A. Hieke (Eds.), New

Essays in Free Logic, volume 23 of Applied Logic Series, Springer, Dordrecht, 2001, pp.
37–48.

[6] M. Fitting, R. L. Mendelsohn, First-order modal logic, volume 480 of Synthese Library, 2
ed., Springer Nature, Cham, 2023.

[7] A. Indrzejczak, M. Zawidzki, Tableaux for free logics with descriptions, in: Proc. of
TABLEAUX, 2021, pp. 56–73.

[8] A. Indrzejczak, M. Zawidzki, When iota meets lambda, Synthese 201 (2023) 1–33.
[9] A. Indrzejczak, Fregean description theory in proof-theoretic setting, Logic and Logical

Philosophy 28 (2019) 137–155.
[10] A. Indrzejczak, Russellian definite description theory—A proof-theoretic approach, The

Review of Symbolic Logic 16 (2023) 624–649.
[11] E. Orlandelli, Labelled calculi for quantified modal logics with definite descriptions, Journal

of Logic and Computation 31 (2021) 923–946.
[12] N. Kürbis, A binary quantifier for definite descriptions for cut free free logics, Studia

Logica 110 (2022) 219–239.
[13] N. Kürbis, Definite descriptions in intuitionist positive free logic, Logic and Logical

Philosophy 30 (2021) 327–358.
[14] A. Borgida, D. Toman, G. Weddell, On referring expressions in information systems derived

from conceptual modelling, in: Proc. of ER, 2016, pp. 183–197.
[15] D. Toman, G. E. Weddell, Identity resolution in conjunctive querying over DL-based

knowledge bases, in: Proc. of DL, 2018.
[16] D. Toman, G. Weddell, Identity resolution in ontology based data access to structured data

sources, in: Proc. of PRICAI, 2019, pp. 473–485.
[17] A. Borgida, D. Toman, G. Weddell, On referring expressions in query answering over first

order knowledge bases, in: Proc. of KR, 2016, pp. 319–328.
[18] A. Artale, A. Mazzullo, A. Ozaki, F. Wolter, On free description logics with definite

descriptions, in: Proc. of KR, 2021, pp. 63–73.

[19] A. Borgida, D. Toman, G. E. Weddell, Concerning referring expressions in query answers,
in: Proc. of IJCAI, 2017, pp. 4791–4795.

[20] D. Toman, G. Weddell, Finding all answers to OBDA queries using referring expressions,
in: Proc. of AI, 2019, pp. 117–129.

[21] A. Mazzullo, Finite Traces and Definite Descriptions. A Knowledge Representation Journey,
Ph.D. thesis, Free University of Bozen-Bolzano, 2022.

[22] P. A. Wałęga, M. Zawidzki, Hybrid modal operators for definite descriptions, in: Proc. of
JELIA, 2023, pp. 712–726.

[23] P. A. Wałęga, Expressive power of definite descriptions in modal logics, in: Proc. of KR,
2024, pp. 687–696.

	1 Introduction
	2 Description Logics with Definite Descriptions
	3 Expressive Power
	4 Tableau System

