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Abstract
Reasoning with rules that allow for exceptions has been a longstanding challenge in knowledge repre-
sentation. The KLM paradigm has been successful for defeasible reasoning in propositional logics, but
its application to Description Logics (DLs) has been challenging. Many approaches to terminological
reasoning with defeasible inclusions have been proposed, but reasoning about ABoxes is still largely
unexplored. In this paper, we consider defeasible inclusions in the expressive DL 𝒜ℒ𝒞ℐ with closed
predicates, but restrict the inclusions in a way that circumvents some of the challenges faced by related
approaches. We also consider the data complexity of defeasible reasoning, which, to our knowledge,
had not yet been analysed. Unfortunately, our approach is hard for the second level of the polynomial
hierarchy, but we identify a restricted fragment that enables tractable reasoning.

Keywords
defeasible reasoning, rational closure, ABoxes, complexity of reasoning

1. Introduction

Defeasible reasoning, that is, reasoning with rules that allow for exceptions, has been a long-
standing challenge in knowledge representation. The KLM paradigm for defeasible reasoning
[1] has been successful in propositional logics [2, 3, 4, 5], providing a principled approach that is
not as computationally expensive as other NMR formalisms. Extending this approach to DLs is
clearly appealing, and it has received significant attention in the literature [6, 7, 8, 9, 10, 11, 12].
But the focus of these works has been almost exclusively on inferring defeasible inclusions from
TBoxes. Data-centric reasoning services, such as defeasible instance checking in the presence of
ABoxes, have been largely overlooked and, to our knowledge, the data complexity of defeasible
inferences about ABox objects remained unexplored.

In our recent paper [13], we consider the expressive DL 𝒜ℒ𝒞ℐ with closed predicates, which
already allows some simple non-monotonic reasoning and which generalizes nominals [14, 15];
this is one of the most expressive DLs that can be decided in ExpTime. We add defeasible
inclusions to 𝒜ℒ𝒞ℐ knowledge bases and give them an exceptionality based semantics in the
style of Rational Closure [16] and the equivalent system Z [3]. The classical part of the knowledge
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base (KB) remains unrestricted, providing the full power of the DL to draw conclusions about
both named and unnamed objects, but the defeasible inclusions are syntactically restricted
in a way that they can draw inferences only about the ABox individuals. The result is a
simple formalism that allows to draw defeasible inferences about specific objects, and where
the combined complexity of these inferences is not higher than for classical reasoning in the
underlying DL. Unfortunately, this is not the case for data complexity: we show that credulous
and sceptical entailment are both intractable. Simply restricting the DL is not enough to regain
tractability, since changing the assignment of defeasible concepts to an individual can affect the
defeasible assignment of its neighbours, which rules out the existence of a unique preferred
model. Nevertheless, we identify a restricted fragment that allows for defeasible instance
checking in a time that is polynomial in the size of the ABox.

Existing defeasible semantics for DLs based on rational closure neglect all defeasible in-
formation for the unnamed objects implied by the existential axioms, sometimes leading to
counterintuitive inferences. To our knowledge, the only adequate solution so far is limited to
the very inexpressive ℰℒ. Our approach fully circumvents the issue of typicality of anonymous
objects: since defeasible inferences do not allow inferring new facts about unnamed objects,
there is no need to decide how to apply the defeasible inclusions to them. While we do not
solve the problem, we do avoid its nontransparent and sometimes counterintuitive aspects.
We believe this is a reasonable compromise. Unnamed objects in an interpretation intuitively
describe structures that should be as general as possible, and we have not seen many realistic
examples that really call for defeasible inferences over anonymous objects.

2. The Formalism

In this section, we formally define our DL knowledge bases with defeasible inclusions which are
concept inclusions that hold for typical, but not necessarily all elements of the domain. Unlike
a ‘strict’ concept inclusion 𝐶 ⊑ 𝐷, a defeasible inclusion 𝐶 ⊏∼ 𝐷 may have exceptions, i.e., in a
model ℐ of 𝐶 ⊏∼ 𝐷 some elements of 𝐶ℐ may not be in 𝐷ℐ ; these are considered exceptional.

Our key design choice is to make sure that defeasible inclusions apply only to objects that are
explicitly named in the knowledge base, and therefore anonymous objects whose existence may
be implied by concept inclusions can be treated as non-exceptional. This will be ensured by
means of rooted concepts, which are concept expressions that are ‘guarded’ by closed predicates.
For closed predicates 𝐶 and 𝑟 in N c

C ⊆ NC and N c
R ⊆ NR , respectively, the term ℐ |=𝑐 𝒜 means

that 𝐶ℐ , 𝑟ℐ only contain an individual if explicitly mentioned. In our formalisms, defeasible
inclusions are restricted to have rooted concepts in the antecedents.
Definition 1. A concept 𝐶 is rooted if one the following is satisfied: 1. 𝐶 ∈ N c

C , 2. 𝐶 of the form

𝐶1 ⊓𝐶2 and at least one of 𝐶1, 𝐶2 is rooted, 3. 𝐶 of the form 𝐶1 ⊔𝐶2 and both 𝐶1, 𝐶2 are rooted,

or 4. 𝐶 of the form ∃𝑟.𝐷 with 𝑟 ∈ N c
R or 𝑟− ∈ N c

R .

A defeasible concept inclusion (DCI) is an expression 𝐶 ⊏∼ 𝐷, where 𝐶,𝐷 are concepts and

𝐶 is rooted. A knowledge base (KB) is a tuple 𝒦 = (𝒯 ,𝒟,𝒜), where 𝒯 is a TBox, 𝒟 is a set of

defeasible inclusions, and 𝒜 is an ABox.

Example 1 (adapted from [6]). Consider the knowledge that red blood cells (RBC) usually

have a nucleus, but mammalian red blood cells (MRBC) typically do not have a nucleus; and



of course mammalian red blood cells are a subclass of red blood cells. 𝑐1, 𝑐2, 𝑐3 are red blood

cells and 𝑐3 is additionally a mammalian red blood cell. Furthermore, we assume the knowl-

edge about RBC and MRBC to be complete for 𝑐1, 𝑐2, 𝑐3. This situation can be described by

the knowledge base 𝒦 = (𝒯 ,𝒟,𝒜) with 𝒜 = {RBC (𝑐1),RBC (𝑐2),RBC (𝑐3),MRBC (𝑐3)},

𝒯 = {MRBC ⊑ RBC , ∃hasNucleus.⊤ ⊑ EN }, and 𝒟 = {RBC ⊏∼ ∃hasNucleus.⊤,
MRBC ⊏∼ ¬∃hasNucleus.⊤} where MRBC and RBC are closed predicates.

We will now define the semantics of a KB 𝒦 = (𝒯 ,𝒟,𝒜) as the interpretations ℐ where
ℐ |= 𝒯 , ℐ |=𝑐 𝒜, and ℐ complies with the defeasible inclusions in 𝒟 as much as possible. To
properly define the latter, following the definition of system Z, the first step is to define the
notion of tolerance, which generalizes a similar concept for propositional rules [3].
Definition 2. We write ℐ, 𝑒 |= 𝐶 ⊏∼ 𝐷, if 𝑒 ∈ (¬𝐶 ⊔𝐷)ℐ . For a set 𝒟 of defeasible inclusions,

we write ℐ, 𝑒 |= 𝒟, if ℐ, 𝑒 |= 𝐶 ⊏∼ 𝐷 for all 𝐶 ⊏∼ 𝐷 ∈ 𝒟. A defeasible inclusion 𝐶 ⊏∼ 𝐷 is

tolerated by a set 𝒟 of defeasible inclusions and a TBox 𝒯 , if there is an interpretation ℐ and an

object 𝑒 ∈ ∆ℐ
such that ℐ |= 𝒯 , 𝑒 ∈ (𝐶 ⊓𝐷)ℐ and ℐ, 𝑒 |= 𝒟.

For a set 𝒟 of defeasible inclusions and a TBox 𝒯 construct the following sequence:

(i) Let 𝒟0
contain all 𝐶 ⊏∼ 𝐷 ∈ 𝒟 such that 𝐶 ⊏∼ 𝐷 is tolerated by 𝒟 and 𝒯 .

(ii) For all ℓ > 0, let 𝒟ℓ
contain all 𝐶 ⊏∼ 𝐷 ∈ 𝒟′

ℓ such that 𝐶 ⊏∼ 𝐷 is tolerated by 𝒟′
ℓ and 𝒯 ,

where 𝒟′
ℓ = 𝒟 ∖ (𝒟0 ∪ · · · ∪ 𝒟ℓ−1).

Let 𝑘 be the smallest integer such that 𝒟𝑘+1 = ∅. Then (𝒟0, . . . ,𝒟𝑘,𝒟∞) with 𝒟∞ = 𝒟′
𝑘+1 is

called the tolerance partition of 𝒟 (w.r.t. 𝒯 ).

Let ℐ be an interpretation such that ℐ |= 𝒟∞∪𝒯 and assume 𝑒 ∈ ∆ℐ
. We let rank𝒟,𝒯 (ℐ, 𝑒) be

defined as follows. If ℐ, 𝑒 |= 𝒟, then rank𝒟,𝒯 (ℐ, 𝑒) = 0. Otherwise, rank𝒟,𝒯 (ℐ, 𝑒) is the biggest

𝑖 ∈ {1, . . . , 𝑘 + 1} such that ℐ, 𝑒 ̸|= 𝒟𝑖−1
.

Intuitively, rank𝒟,𝒯 (ℐ, 𝑒) tells us to what extent the defeasible inclusions are satisfied at
𝑒 in ℐ . If rank𝒟,𝒯 (ℐ, 𝑒) = 0, then 𝑒 is non-exceptional and satisfies all inclusions in 𝒟. If
rank𝒟,𝒯 (ℐ, 𝑒) = 𝑘 + 1, then 𝑒 is highly exceptional: it violates some inclusion in 𝒟𝑘, which
stores the most specific defeasible inclusions of𝒟. Note that the rootedness condition guarantees
that unnamed objects have rank𝒟,𝒯 (ℐ, 𝑒) = 0.

Let ∆𝒜 be the set of individuals occurring explicitly in an ABox 𝒜. We can now compare the
extent to which interpretations satisfy defeasible inclusions:
Definition 3. Assume a KB 𝒦 = (𝒯 ,𝒟,𝒜). Let (𝒟0, . . . ,𝒟𝑘,𝒟∞) be the tolerance partition of

𝒟 w.r.t. 𝒯 . An interpretation ℐ is called 𝒦-admissible, if ℐ |= 𝒯 , ℐ |=𝑐 𝒜, and ℐ |= 𝒟∞
. Assume

a pair ℐ,𝒥 of 𝒦-admissible interpretations. We write ℐ ≺𝒦 𝒥 , if the following holds:

• rank𝒟,𝒯 (ℐ, 𝑎) ≤ rank𝒟,𝒯 (𝒥 , 𝑎) for all individuals 𝑎 ∈ ∆𝒜, and

• rank𝒟,𝒯 (ℐ, 𝑎) < rank𝒟,𝒯 (𝒥 , 𝑎) for some individual 𝑎 ∈ ∆𝒜.

A 𝒦-admissible interpretation 𝒥 is called a minimal model of 𝒦, if there exists no 𝒦-admissible

interpretation ℐ such that ℐ ≺𝒦 𝒥 .

Example 2. Consider 𝒦 from Example 1. The tolerance partition of 𝒟 is (𝒟0,𝒟1) with 𝒟0 =
{RBC ⊏∼ ∃hasNucleus.⊤} and 𝒟1 = {MRBC ⊏∼ ¬∃hasNucleus.⊤}.

Let ℐ be an interpretation with ℐ |= 𝒜 ∪ 𝒯 and ℐ |= (∃hasNucleus.⊤)(𝑐1), ℐ |=
(¬∃hasNucleus.⊤)(𝑐2), ℐ |= (∃hasNucleus.⊤)(𝑐3). We have rank𝒟,𝒯 (ℐ, 𝑐1) = 0, since

ℐ, 𝑐1 |= 𝒟. We have rank𝒟,𝒯 (ℐ, 𝑐2) = 1, because ℐ violates an inclusion in 𝒟0
for 𝑐2.



Observe that even KBs that have a canonical model may have more than one minimal model.
Therefore, we consider sceptical and credulous entailment of assertions in the minimal models.
Sceptical entailment over the minimal models accepts only conclusions that hold in all minimal
models, while credulous entailment accepts conclusions that hold in at least one minimal model.

For this formalism, we show the following complexity results.

Theorem 1. Credulous and sceptical entailment of assertions is ExpTime-complete in combined

complexity. In data complexity, credulous and sceptical entailment of assertions is Σ𝑃
2 -complete

and Π𝑃
2 -complete, respectively.

This complexity is too high for applications involving large ABoxes, hence we identify a
restricted fragment of our formalism that has tractable data complexity.

Definition 4 (Local KBs). A complex concept 𝐶 is closed if all concept and role names occurring

in it are closed. An ordinary inclusion 𝐶 ⊑ 𝐷 or a defeasible inclusion 𝐶 ⊏∼ 𝐷 is called local, if

every quantified concept of the form ∃𝑟.𝐸 or ∀𝑟.𝐹 occurring in 𝐶 or 𝐷 is closed. A knowledge

base 𝒦 = (𝒯 ,𝒟,𝒜) is local if every defeasible inclusion in 𝒟 and every inclusion in 𝒯 is local.

The intuition of local inclusions is that they can only describe an object and its immediate
surroundings. While they can use quantifiers on closed roles and predicates, which can be
evaluated by looking up the assertions in the ABox, they cannot be affected by the assignment
of open concepts in neighbouring nodes. This will allow us to answer queries about an object
without the need to consider the assignments of open concepts for all objects in 𝒜.

Theorem 2. Let 𝒦 be a local KB and 𝛼 be an assertion. Checking whether 𝒦 sceptically (or credu-

lously, resp.) entails 𝐶(𝑎) is polynomial in data complexity and in 𝑃NP
in combined complexity.

3. Related Work and Conclusions

We have presented a defeasible reasoning framework over ABoxes based on rational closure,
identifying a tractable fragment where queries can be efficiently answered.

Despite the many works that extend DLs with defeasible reasoning based on rational closure,
reasoning about ABoxes is still lacking. While rational closure extends well to DLs with the
disjoint model union property [10, 17], it struggles with DLs that include individuals and closed
predicates. Stable rational closure has been proposed for more expressive logics like 𝒮ℛ𝒪ℐ𝒬
[6], and although our approach appears compatible in specific cases, a thorough comparison
remains pending. Unlike most related methods, our framework avoids the quantification neglect
problem by design, since it applies only to named individuals in the ABox. Prior solutions to
this problem exist only for lightweight logics such as ℰℒ⊥ [7].

While our method sidesteps the issue of quantification neglect, it does suffer from other
limitations of rational closure, like inheritance blocking. Future work includes exploring more
general solutions to quantification neglect and how alternative semantics could be adapted for
tractable reasoning, potentially inspired by approaches like 𝒟ℒ𝑁 [18, 19].



Acknowledgments

This work was partially supported by the Austrian Science Fund (FWF) projects PIN8884924,
P30873 and 10.55776/COE12.

References

[1] S. Kraus, D. Lehmann, M. Magidor, Nonmonotonic reasoning, preferential models and
cumulative logics, Artif. Intell. 44 (1990) 167–207.

[2] E. W. Adams, The Logic of Conditionals: An Application of Probability to Deductive Logic,
Synthese Library, Springer Science+Business Media, Dordrecht, 1975.

[3] J. Pearl, System Z: A natural ordering of defaults with tractable applications to nonmono-
tonic reasoning, in: R. Parikh (Ed.), Proceedings of the 3rd Conference on Theoretical
Aspects of Reasoning about Knowledge, Pacific Grove, CA, USA, March 1990, Morgan
Kaufmann, 1990, pp. 121–135.

[4] D. Lehmann, Another perspective on default reasoning, Ann. Math. Artif. Intell. 15 (1995)
61–82. doi:10.1007/BF01535841.

[5] C. Komo, C. Beierle, Nonmonotonic reasoning from conditional knowledge bases with sys-
tem W, Ann. Math. Artif. Intell. 90 (2022) 107–144. doi:10.1007/s10472-021-09777-9.

[6] P. A. Bonatti, Rational closure for all description logics, Artif. Intell. 274 (2019) 197–223.
doi:10.1016/J.ARTINT.2019.04.001.

[7] M. Pensel, A. Turhan, Reasoning in the defeasible description logic 𝜖 - computing standard
inferences under rational and relevant semantics, Int. J. Approx. Reason. 103 (2018) 28–70.
doi:10.1016/J.IJAR.2018.08.005.

[8] G. Casini, T. A. Meyer, K. Moodley, U. Sattler, I. Varzinczak, Introducing defeasibility
into OWL ontologies, in: M. Arenas, Ó. Corcho, E. Simperl, M. Strohmaier, M. d’Aquin,
K. Srinivas, P. Groth, M. Dumontier, J. Heflin, K. Thirunarayan, S. Staab (Eds.), The Semantic
Web - ISWC 2015 - 14th International Semantic Web Conference, Bethlehem, PA, USA,
October 11-15, 2015, Proceedings, Part II, volume 9367 of Lecture Notes in Computer Science,
Springer, 2015, pp. 409–426. doi:10.1007/978-3-319-25010-6_27.

[9] G. Casini, U. Straccia, Defeasible inheritance-based description logics, J. Artif. Intell. Res.
48 (2013) 415–473. doi:10.1613/JAIR.4062.

[10] K. Britz, G. Casini, T. Meyer, K. Moodley, U. Sattler, I. Varzinczak, Principles of klm-style
defeasible description logics, ACM Trans. Comput. Log. 22 (2021) 1:1–1:46. doi:10.1145/
3420258.

[11] G. Casini, U. Straccia, A rational entailment for expressive description logics via description
logic programs, in: E. Jembere, A. J. Gerber, S. Viriri, A. W. Pillay (Eds.), Artificial
Intelligence Research - Second Southern African Conference, SACAIR 2021, Durban, South
Africa, December 6-10, 2021, Proceedings, volume 1551 of Communications in Computer and

Information Science, Springer, 2021, pp. 177–191. doi:10.1007/978-3-030-95070-5_
12.

[12] L. Giordano, V. Gliozzi, Reasoning about exceptions in ontologies: from the lexicographic

http://dx.doi.org/10.1007/BF01535841
http://dx.doi.org/10.1007/s10472-021-09777-9
http://dx.doi.org/10.1016/J.ARTINT.2019.04.001
http://dx.doi.org/10.1016/J.IJAR.2018.08.005
http://dx.doi.org/10.1007/978-3-319-25010-6_27
http://dx.doi.org/10.1613/JAIR.4062
http://dx.doi.org/10.1145/3420258
http://dx.doi.org/10.1145/3420258
http://dx.doi.org/10.1007/978-3-030-95070-5_12
http://dx.doi.org/10.1007/978-3-030-95070-5_12


closure to the skeptical closure, Fundam. Informaticae 176 (2020) 235–269. doi:10.3233/
FI-2020-1973.

[13] J. Haldimann, M. Ortiz, M. Šimkus, Towards practicable defeasible reasoning for ABoxes,
in: Logics in Artificial Intelligence - 19th European Conference, JELIA 2025, 2025.

[14] E. Franconi, Y. A. Ibáñez-García, İ. Seylan, Query answering with DBoxes is hard, Elec-
tronic Notes in Theoretical Computer Science 278 (2011) 71–84. doi:https://doi.org/
10.1016/j.entcs.2011.10.007, proceedings of the 7th Workshop on Methods for
Modalities (M4M’2011) and the 4th Workshop on Logical Aspects of Multi-Agent Systems
(LAMAS’2011).

[15] C. Lutz, I. Seylan, F. Wolter, The data complexity of ontology-mediated queries with
closed predicates, Logical Methods in Computer Science Volume 15, Issue 3 (2019). doi:10.
23638/LMCS-15(3:23)2019.

[16] D. Lehmann, What does a conditional knowledge base entail?, in: R. J. Brachman, H. J.
Levesque, R. Reiter (Eds.), Proceedings of the 1st International Conference on Principles
of Knowledge Representation and Reasoning (KR’89). Toronto, Canada, May 15-18 1989,
Morgan Kaufmann, 1989, pp. 212–222.

[17] L. Giordano, V. Gliozzi, N. Olivetti, G. L. Pozzato, Semantic characterization of rational
closure: From propositional logic to description logics, Artif. Intell. 226 (2015) 1–33.
doi:10.1016/j.artint.2015.05.001.

[18] P. A. Bonatti, M. Faella, I. M. Petrova, L. Sauro, A new semantics for overriding in
description logics, Artif. Intell. 222 (2015) 1–48. doi:10.1016/J.ARTINT.2014.12.010.

[19] P. A. Bonatti, L. Sauro, On the logical properties of the nonmonotonic description logic
dln, Artif. Intell. 248 (2017) 85–111. doi:10.1016/J.ARTINT.2017.04.001.

http://dx.doi.org/10.3233/FI-2020-1973
http://dx.doi.org/10.3233/FI-2020-1973
http://dx.doi.org/https://doi.org/10.1016/j.entcs.2011.10.007
http://dx.doi.org/https://doi.org/10.1016/j.entcs.2011.10.007
http://dx.doi.org/10.23638/LMCS-15(3:23)2019
http://dx.doi.org/10.23638/LMCS-15(3:23)2019
http://dx.doi.org/10.1016/j.artint.2015.05.001
http://dx.doi.org/10.1016/J.ARTINT.2014.12.010
http://dx.doi.org/10.1016/J.ARTINT.2017.04.001

	1 Introduction
	2 The Formalism
	3 Related Work and Conclusions

