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Abstract
We investigate the extension of description logics (DLs) with definite descriptions—that is, references to
individuals based on descriptions of their properties. Specifically, we introduce the syntax and semantics
for 𝜀-individuals, modelled on the 𝜀-terms that Hilbert introduced for first-order logic. We present
sound and complete reasoning algorithms for the logics that result from adding 𝜀-individuals to several
well-known DLs. In particular, for the extension of the basic DL 𝒜ℒ𝒞 with 𝜀-individuals, we provide
a tableau calculus and show that the language without TBoxes is as expressive as the language with
TBoxes; both also share EXPTIME-completeness of reasoning. In the case of the extension 𝒜ℒ𝒞𝒪 of the
language with nominals, we give a reduction to the language 𝒜ℒ𝒞𝒪𝑢 with the universal role and show
that reasoning remains EXPTIME-complete. Finally, for the lightweight DL ℰℒ𝒪, we show that the
usual saturation calculus can be extended for 𝜀-individuals, while maintaining the PTIME complexity.
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1. Introduction

In semantic modelling, it is often desirable to have a way to refer to individuals by describing
their properties. For example, one might want a way of referring to ‘the king of France’ based
on a formalisation of the ‘king of’ relation and the country of France. In engineering, a notation
referring to ‘the temperature sensor on the exhaust pipe of the generator. . . ’ would be similar
to tagging systems commonly used in the engineering of industrial plants. Such references to
individuals based on their properties are known as definite descriptions, and they have been
extensively studied in both logic and philosophy [1, 2, 3, 4]. The key questions that have to be
answered when attempting a formalisation of definite descriptions within the model semantics
framework include the following: (a) What does a definite description ‘the thing with property
𝐶’ refer to when there is no such thing? (b) What if there are several things with that property?
(c) If there are several syntactically identical references, do they refer to the same thing?

The best known formalisation of definite descriptions is probably the one for first-order logic
as introduced by Hilbert [5]. In this calculus, so-called iota terms 𝜄𝑥.𝜑 are added to the syntax
for this purpose, where 𝑥 is a bound variable and 𝜑 is a formula describing the required property.
Such terms may only be used in contexts where both existence and uniqueness of such values
have first been established, which addresses questions (a)–(c). However, when transforming
proofs, it can happen that an 𝜄-term is moved outside the context in which existence and
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uniqueness are guaranteed. To address this issue, Hilbert also introduced epsilon terms 𝜀𝑥.𝜑;
such a term may always be used, and it (i) denotes an arbitrary domain element if no element
satisfies𝜑 and (ii) denotes one of the domain elements that satisfy𝜑 if there are several. Moreover,
it is generally agreed that (iii) syntactically identical occurrences of 𝜀-terms should denote the
same value even when this value is not known. What is less clear from Hilbert’s work is whether
𝜀𝑥.𝜑 = 𝜀𝑥.𝜓 when 𝜑 and 𝜓 are equivalent but not syntactically identical. This property was
not needed for Hilbert’s purposes, but subsequent work has explored the consequences of this
choice, as well as possible relaxations of (iii), for different logics [6, 7, 8, 9, 10].

In the context of description logics (DLs), Artale et al. [11] have recently investigated the
addition of individuals 𝜄𝐶 , corresponding to Hilbert’s 𝜄-terms, to common DLs such as 𝒜ℒ𝒞 and
ℰℒ. Rather than adopting Hilbert’s approach to questions (a) and (b) above, however, they have
based their formalisation on free logics [12, 13], where iota terms are permitted not to denote
anything. In particular, in their semantics a nominal {𝜄.𝐶} is interpreted as a domain element
𝑑 if the concept 𝐶 is interpreted as the singleton set {𝑑}, and as empty otherwise. They have
shown that extending 𝒜ℒ𝒞 and ℰℒ with nominals, the universal role, and such 𝜄-individuals
does not increase the complexity of reasoning compared to the original languages.

While Artale et al. have demonstrated the viability of incorporating definite descriptions into
DLs, we believe that adopting the free logic approach to semantics is a significant departure from
the conventional DL framework. Hähnle [14] has shown that it is in many ways more natural to
let undefined terms denote an unknown domain element than to deal with partiality in the seman-
tics. In this paper, we therefore investigate the consequences of adding 𝜀-individuals 𝜀.𝐶 to DLs
instead, addressing questions (a)–(c) in spirit of Hilbert’s 𝜀-terms in first-order logic. Specifically,
we present the syntax and semantics of this addition, and discuss reasoning methods and com-
plexity for𝒜ℒ𝒞 (where 𝜀-individuals can only appear in the ABox), 𝒜ℒ𝒞𝒪, and ℰℒ𝒪. In our for-
malisation, we adopt the so-called intentional semantics of 𝜀-individuals, where only syntactically
identical occurrences of such individuals are required to be interpreted identically to satisfy prop-
erty (iii). This contrasts with the extensional semantics, in which the 𝜀-individuals for all equiv-
alent concepts must denote the same domain element—an alternative we leave for future work.

Our results can be summarised as follows. After having formulated 𝜀-individuals in the
context of 𝒜ℒ𝒞 (Section 2), we provde a tableau calculus for this extension and show that
the result of adding 𝜀-individuals to the language without TBoxes renders it as expressive as
the language with TBoxes; EXPTIME-completeness of reasoning is also preserved (Section 3).
For the extension 𝒜ℒ𝒞𝒪 of 𝒜ℒ𝒞 with nominals, we present a reduction of the language with
𝜀-individuals to one with the universal role, 𝒜ℒ𝒞𝒪𝑢, thereby showing that reasoning remains
in EXPTIME (Section 4). Finally, for the lightweight DL ℰℒ𝒪, we show that the usual saturation
calculus can be extended to support 𝜀-individuals, while preserving PTIME completeness of
concept subsumption (Section 5).

Full proofs of all claims in this paper can be found in the technical report [15].

2. 𝒜ℒ𝒞 with 𝜀-Individuals

In this section, we introduce the syntax and semantics of 𝜀-individuals in the context of 𝒜ℒ𝒞.
The definitions for 𝒜ℒ𝒞𝒪 and ℰℒ𝒪, given in Sections 4 and 5, follow the same pattern.



We begin with the syntax of 𝒜ℒ𝒞 extended with 𝜀-individuals, which we call 𝒜ℒ𝒞𝜀. We
first do this for concepts and individuals, where the latter includes 𝜀-individuals 𝜀.𝐶 as a new
syntactic category, which can be added not only to 𝒜ℒ𝒞 but also to any DL. These individuals
may be used wherever an individual name is allowed, which, in the case of 𝒜ℒ𝒞, means only in
ABox assertions. However, we will later consider logics 𝒜ℒ𝒞𝒪 and ℰℒ𝒪 with nominals, where
𝜀-individuals may also appear in concept descriptions.

Definition 1 (𝒜ℒ𝒞𝜀 Syntax). Let 𝑁𝐶 , 𝑁𝑅, and 𝑁𝑂 be sets of concept names, role names, and
individual names, respectively. Then, 𝒜ℒ𝒞𝜀 concepts and individual descriptions, 𝐶 and 𝜏 , are
defined by the following grammar:

𝐶 ::= 𝐴 | ¬𝐶 | 𝐶 ⊓ 𝐶 | 𝐶 ⊔ 𝐶 | ∃𝑟.𝐶 | ∀𝑟.𝐶,
𝜏 ::= 𝑎 | 𝜀.𝐶,

where𝐴, 𝑟, and 𝑎 range over𝑁𝐶 , 𝑁𝑅, and𝑁𝑂 , respectively. An assertional axiom is an expression
of the form 𝐶(𝜏) or 𝑟(𝜏1, 𝜏2) where 𝐶 is a concept, 𝑟 a role name, and 𝜏, 𝜏1, 𝜏2 individual descrip-
tions. An 𝒜ℒ𝒞𝜀 concept inclusion axiom is of the form 𝐶 ⊑ 𝐷 for concepts 𝐶 and 𝐷. Then,
𝒜ℒ𝒞𝜀 ABox and TBox are sets of 𝒜ℒ𝒞𝜀 assertional and concept inclusion axioms, respectively.
An 𝒜ℒ𝒞𝜀 knowledge base (KB) is a pair 𝒦 = (𝒜, 𝒯 ) consisting of an ABox 𝒜 and a TBox 𝒯 .

Note that all 𝒜ℒ𝒞𝜀 concepts are also in plain 𝒜ℒ𝒞, and the same holds for TBoxes.
We now move on to the semantics, beginning with the definition of interpretations for

concepts and individual descriptions. For later discussion, it is convenient to first define
interpretations that impose no restrictions on the interpretation of an individual 𝜀.𝐶 , apart
from the requirement that all syntactically identical occurrences be interpreted the same, as
stated in property (iii) in the introduction. We then constrain interpretations to satisfy the
central intended property of 𝜀-individuals—property (ii) in the introduction. It is common in
the literature on 𝜀-terms (e.g. [7, 9]) to refer to the resulting semantics as intensional.

Definition 2 (Interpretations and Intentional Interpretations). An interpretation is a pair
ℐ = (∆ℐ , ·ℐ), where domain ∆ℐ is a non-empty set, and ·ℐ is a function mapping each concept
name 𝐴 to 𝐴ℐ ⊆ ∆ℐ , each role name 𝑟 to 𝑟ℐ ⊆ ∆ℐ ×∆ℐ , and each individual description 𝜏 to
𝜏ℐ ∈ ∆ℐ . Then, for each 𝒜ℒ𝒞𝜀 concepts 𝐶,𝐷 and role name 𝑟, let

(𝐶 ⊓𝐷)ℐ = 𝐶ℐ ∩𝐷ℐ , (𝐶 ⊔𝐷)ℐ = 𝐶ℐ ∪𝐷ℐ , (¬𝐶)ℐ = ∆ℐ ∖ 𝐶ℐ ,

(∃𝑟.𝐶)ℐ = {𝑥 ∈ ∆ℐ | there exists ⟨𝑥, 𝑦⟩ ∈ 𝑟ℐ such that 𝑦 ∈ 𝐶ℐ},
(∀𝑟.𝐶)ℐ = {𝑥 ∈ ∆ℐ | for all ⟨𝑥, 𝑦⟩ ∈ 𝑟ℐ , 𝑦 ∈ 𝐶ℐ}.

An interpretation ℐ is intensional if (𝜀.𝐶)ℐ ∈ 𝐶ℐ for each concept 𝐶 such that 𝐶ℐ ̸= ∅,.

We emphasise that 𝜀-individuals based on semantically equivalent concepts may not be
interpreted the same; for instance, there is no guarantee that (𝜀.(𝐶 ⊓𝐷))ℐ = (𝜀.(𝐷 ⊓ 𝐶))ℐ .
An alternative approach would be to define the semantics of 𝜀.𝐶 as a function of the extension
𝐶ℐ . The properties of such semantics, usually referred to as extensional, are left as future work.

We also note that the definition imposes no restriction on 𝜀.𝐶ℐ when 𝐶ℐ = ∅. In this case,
the value may be any domain element, potentially different ones for syntactically different
concept descriptions, but still committed to be the same one for all syntactically identical 𝐶 .

We move on to the semantics of 𝒜ℒ𝒞𝜀 KBs.



Definition 3 (Semantics of Axioms and Knowledge Bases). Given an 𝒜ℒ𝒞𝜀 axiom 𝜑 and
interpretation ℐ , the satisfaction of 𝜑, written ℐ |= 𝜑, is defined, for different forms of 𝜑, as follows:

ℐ |= 𝐶(𝜏) if 𝜏ℐ ∈ 𝐶ℐ , ℐ |= 𝑟(𝜏1, 𝜏2) if ⟨𝜏ℐ1 , 𝜏ℐ2 ⟩ ∈ 𝑟ℐ , ℐ |= 𝐶 ⊑ 𝐷 if 𝐶ℐ ⊆ 𝐷ℐ .

Then, ℐ satisfies a KB 𝒦 = (𝒜, 𝒯 ), written ℐ |= 𝒦, if it satisfies each axiom in 𝒜 and in 𝒯 . A KB
𝒦 is satisfiable if there exists an interpretation ℐ that satisfies 𝒦. It is intensionally satisfiable if
there exists such an intensional interpretation.

The extension of the language by intensionally interpreted 𝜀-individuals is conservative, in
the sense that every ‘standard’ interpretation can be extended to an intensional one.

Theorem 4 (Embedding Theorem). Let𝒦 be an𝒜ℒ𝒞𝜀 KB that mentions no individual descriptions
of the form 𝜀.𝐶 . Then, 𝒦 is satisfiable if and only if 𝒦 is intensionally satisfiable.

Proof. The backward direction follows from the definition. For the forward direction, assume
that 𝒦 is satisfiable and let ℐ |= 𝒦. Let 𝑓 : 𝒫(∆ℐ) → ∆ℐ be a choice function—that is, a
function that selects an element in the argument subset of ∆ℐ if this subset is non-empty and
an arbitrary element of ∆ℐ otherwise. Let an intentional interpretation ℐ𝐼 have domain ∆ℐ ,
interpret all concept, role, and individual names as ℐ , and have 𝜀.𝐶ℐ𝐼 = 𝑓(𝐶ℐ) for each 𝐶 .

3. The Calculus for 𝒜ℒ𝒞𝜀 and its Complexity

An initial observation regarding reasoning in 𝒜ℒ𝒞𝜀 is that 𝜀-individuals in ABox axioms of
the form 𝐶(𝜀.𝐷) can be used to express arbitrary TBox axioms: for each concept 𝐶 , we have
ℐ |= (¬𝐶)(𝜀.𝐶) if and only if 𝐶ℐ = ∅, and thus, for every two concept descriptions 𝐶 and 𝐷,

ℐ |= 𝐶 ⊑ 𝐷 ⇐⇒ (𝐶 ⊓ ¬𝐷)ℐ = ∅ ⇐⇒ ℐ |= (¬𝐶 ⊔𝐷)(𝜀(𝐶 ⊓ ¬𝐷)). (1)

This equivalence immediately yields a lower bound on expressive power (and as a result,
efficiency of reasoning): 𝒜ℒ𝒞𝜀 under intensional semantics without TBoxes is at least as
expressive as 𝒜ℒ𝒞 with general TBoxes. Thus, 𝒜ℒ𝒞𝜀 ABox satisfiability is EXPTIME-hard [16,
17, 18, 19], exceeding the PSPACE-completeness of this problem for standard 𝒜ℒ𝒞 (note here
that concept satisfiability in 𝒜ℒ𝒞𝜀 coincides with that in 𝒜ℒ𝒞). In the next section, we will see
that EXPTIME is also an upper bound, both with and without TBox.

Before this, however, we introduce a tableau calculus for the satisfiability problem in 𝒜ℒ𝒞𝜀,
focusing on ABox; in light of equivalence (1), this calculus applies also to 𝒜ℒ𝒞𝜀 KBs. Our
calculus operates concepts in negation normal form—that is, with negation applied only to
concept names. Reasoning about 𝜀-individuals 𝜀.𝐶 requires distinguishing two cases: one
where 𝐶ℐ is non-empty, in which case ℐ |= 𝐶(𝜀.𝐶), and one where 𝐶ℐ is empty. The latter is
expressible as (¬𝐶)(𝜀.𝐶), but this introduces an additional negation that disrupts the negation
normal form and thus requires re-normalisation. This, in turn, complicates the reasoning process
when saturating open branches. So, we instead introduce a new auxiliary form of ABox axioms,
𝐶 , which expresses the emptiness of a concept 𝐶 . However, we emphasise that such axioms are
introduced purely as a reasoning aid, as 𝐶 is semantically equivalent to (¬𝐶)(𝜀.𝐶).
Definition 5. A Ξ-ABox is an 𝒜ℒ𝒞𝜀 ABox that additionally allows for Ξ-axioms of the form 𝐶 ,
where 𝐶 is an 𝒜ℒ𝒞𝜀 concept. For an interpretation ℐ , we let ℐ |= 𝐶 if 𝐶ℐ = ∅.



We are now ready to define the negation normal form.

Definition 6 (Negation Normal Form). An 𝒜ℒ𝒞𝜀 concept 𝐶 is in negation normal form (NNF)
if negation appears only in front of concept names. A Ξ-ABox 𝒜 is in NNF if, for every axiom of
the form 𝐶(𝜏) in 𝒜, the concept 𝐶 is in NNF.

As usual, every concept 𝐶 and, thus every Ξ-ABox 𝒜 can be transformed in polynomial time
into an equivalent concept and ABox, respectively, in NNF, which are denoted ∼𝐶 and ∼𝒜.

Note that we do not require the concepts within 𝜀-individuals in an ABox in NNF to be in
NNF. In fact, such transformations must be avoided, as they may alter the syntactic identity of
individual descriptions. For instance, if 𝐶1 and 𝐶2 are syntactically different, then 𝜀.𝐶1 and
𝜀.𝐶2 may be interpreted differently, but if their respective NNFs ∼𝐶1 and ∼𝐶2 are syntactically
identical, then 𝜀.(∼𝐶1) and 𝜀.(∼𝐶2)must be interpreted by the same domain element. Moreover,
the concept 𝐶 in a Ξ-axiom 𝐶 need not be in NNF, even if the containing ABox is.

The tableau calculus for 𝒜ℒ𝒞𝜀, which is defined next, is based on the one by Bucheit et
al. [17]. The calculus operates on a set 𝒮 of Ξ-ABoxes in NNF and consists of six rules, each
attempting to replace an ABox in 𝒮 by one or two new ABoxes. The goal is to demonstrate
unsatisfiability by deriving a clash—that is, the presence of both 𝐴(𝜏) and ¬𝐴(𝜏) in an ABox
for some 𝐴 ∈ 𝑁𝐶 and individual description 𝜏 . If every ABox in the set contains a clash, then
the calculus concludes that each ABox in the input 𝒮 is unsatisfiable. Conversely, if an ABox
contains no clash and no rule is applicable to it, then the input 𝒮 contains a satisfiable ABox.

Definition 7 (Tableau Calculus for 𝒜ℒ𝒞𝜀). Given a finite set 𝒮 of Ξ-ABoxes, where, in each
𝒜 ∈ 𝒮 , certain individual descriptions are designated to be ancestors of others, a rule application
replaces some ABox 𝒜 in 𝒮 by one or two ABoxes 𝒜′ and (potentially) 𝒜′′ (where the ancestry
relation for common individual descriptions is inherited from 𝒜) by the following rules:

1. if 𝒜 includes (𝐶1⊓𝐶2)(𝜏), but not both𝐶1(𝜏) and𝐶2(𝜏), then 𝒜′ := 𝒜∪{𝐶1(𝜏), 𝐶2(𝜏)};

2. if 𝒜 includes (𝐶1 ⊔ 𝐶2)(𝜏), but neither 𝐶1(𝜏) nor 𝐶2(𝜏), then 𝒜′ := 𝒜 ∪ {𝐶1(𝜏)} and
𝒜′′ := 𝒜 ∪ {𝐶2(𝜏)};

3. if 𝒜 includes (∀𝑟.𝐶)(𝜏) and 𝑟(𝜏, 𝜏 ′), but not 𝐶(𝜏 ′) then 𝒜′ := 𝒜 ∪ {𝐶(𝜏 ′)};

4. if 𝒜 includes (∃𝑟.𝐶)(𝜏) such that there is no 𝜏 ′ with𝐶(𝜏 ′) and 𝑟(𝜏, 𝜏 ′) in 𝒜, and there is no
ancestor 𝜏 ′′ of 𝜏 that is blocked—that is, has an ancestor 𝜏 ′′′ such that 𝐶 ′(𝜏 ′′) ∈ 𝒜 implies
𝐶 ′(𝜏 ′′′) ∈ 𝒜 for every concept 𝐶 ′—then 𝒜′ := 𝒜 ∪ {𝐶(𝑏), 𝑟(𝜏, 𝑏)}, where 𝑏 is a fresh
individual name with ancestors 𝜏 and all ancestors of 𝜏 (assuming that 𝑁𝑂 is sufficiently
large);

5. if 𝒜 includes 𝐶1(𝜀.𝐶2), but neither (∼𝐶2)(𝜀.𝐶2) nor 𝐶2, then 𝒜′ := 𝒜 ∪ {(∼𝐶2)(𝜀.𝐶2)}
and 𝒜′′ := 𝒜 ∪ {𝐶2};

6. if 𝒜 includes 𝐶 and an individual description 𝜏 is mentioned in an axiom in 𝒜, but
(∼(¬𝐶))(𝜏) is not in 𝒜, then 𝒜′ := 𝒜 ∪ {(∼(¬𝐶))(𝜏)}.

Among the rules in Definition 7, the first four are inherited from the standard tableau calculus
for 𝒜ℒ𝒞, while the last two address reasoning with 𝜀-individuals. In particular, Rule 5 splits the



branch into two: if an ABox includes some 𝜀.𝐶 , then either 𝜀.𝐶 satisfies 𝐶 or 𝐶 is empty. Then,
Rule 6 is essentially a reframing of the standard TBox-rule in terms of Ξ-axioms.

We argue the correctness of our calculus by means of soundness and completeness theorems.

Theorem 8 (Soundness). Let 𝒮 ′ be a set of Ξ-ABoxes obtained from a set 𝒮 of Ξ-ABoxes in NNF
by an application of a rule in Definition 7. Then, each ABox in 𝒮 ′ is in NNF. Moreover, if each
ABox in 𝒮 ′ is intensionally unsatisfiable, then each ABox in 𝒮 is intensionally unsatisfiable.

Proof sketch. Let 𝒜′ and (potentially) 𝒜′′ be the Ξ-ABoxes obtained by a rule application to a
Ξ-ABox 𝒜. We show that if 𝒜 is intensionally satisfiable, then either 𝒜′ or 𝒜′′ is intensionally
satisfiable. We concentrate on Rules 5 and 6 here, since the other rules are standard.

Assume first that Rule 5 is applied to 𝐶1(𝜀.𝐶2) and ℐ is an intensional interpretation such
that ℐ |= 𝐶1(𝜀.𝐶2). If 𝐶ℐ

2 ̸= ∅ then (𝜀.𝐶2)
ℐ ∈ 𝐶ℐ

2 since ℐ is intensional, and so ℐ |= 𝐶2(𝜀.𝐶2),
implying ℐ |= (∼𝐶2)(𝜀.𝐶2). Otherwise, ℐ |= 𝐶2 by definition.

Assume now that Rule 6 is applied to 𝐶 . By definition, 𝐶ℐ = ∅, and so 𝜏 /∈ 𝐶ℐ implies
𝜏 ∈ (¬𝐶)ℐ = (∼(¬𝐶))ℐ for every individual description 𝜏 .

Theorem 9 (Completeness). Assume that no rules in Definition 7 is applicable to a set 𝒮 of
Ξ-ABoxes in NNF. If 𝒜 ∈ 𝒮 contains no clash then 𝒜 is intensionally satisfiable.

Proof sketch. Given an ABox 𝒜 as described, we construct an intentional interpretation ℐ𝒜
satisfying 𝒜. The domain ∆ℐ𝒜 of ℐ𝒜 consist of all individual descriptions mentioned in 𝒜.
Then, for each individual description 𝜏 appearing in 𝒜, we set 𝜏ℐ𝒜 = 𝜏 ; in particular, for every
concept 𝐶 , if 𝜀.𝐶 appears in 𝒜 then (𝜀.𝐶)ℐ𝒜 = 𝜀.𝐶 . Moreover, for 𝜀.𝐶 not mentioned in 𝒜, we
set (𝜀.𝐶)ℐ𝒜 = 𝑓(𝐶ℐ𝒜) for a choice function 𝑓 for ∆ℐ𝒜 . Finally, for each concept name 𝐴, we
set𝐴ℐ𝒜 = {𝜏 | 𝐴(𝜏) ∈ 𝒜}, and for each role name 𝑟, we define 𝑟ℐ𝒜 as follows: if 𝑟(𝜏1, 𝜏2) ∈ 𝒜,
then ⟨𝜏1, 𝜏2⟩ ∈ 𝑟ℐ𝒜 , and if 𝜏1 is blocked by 𝜏 ′1 and 𝑟(𝜏 ′1, 𝜏2) ∈ 𝒜, then ⟨𝜏1, 𝜏2⟩ ∈ 𝑟ℐ𝒜 . It is a
routine to show that ℐ𝒜 is intentional and satisfies 𝒜.

Theorems 8 and 9 give us the following result; note that termination follows from the same
arguments as for plain 𝒜ℒ𝒞 (with TBox) [17].

Theorem 10 (Calculus Correctness). Let𝒜 be an𝒜ℒ𝒞𝜀 ABox. The tableau calculus in Definition 7
terminates on {∼𝒜} after a finite number of rule applications. Moreover, 𝒜 is satisfiable if and
only if the set of ABoxes after the termination contains an ABox without a clash.

We finish the section with the complexity of 𝒜ℒ𝒞𝜀 reasoning.

Theorem 11 (Complexity). The problem of 𝒜ℒ𝒞𝜀 KB satisfiability is EXPTIME-complete.

As mentioned above, the lower bound follows from the facts that we can encode TBoxes in
𝒜ℒ𝒞𝜀 ABoxes and that 𝒜ℒ𝒞 concept satisfiability with TBox is EXPTIME-complete [18, 19].
For the upper bound, note that, as for plain 𝒜ℒ𝒞, the calculus in Definition 7 may run in time
higher than exponential, and so it cannot be used as a justification of the upper bound. So, we
defer the argument to Theorem 16, where we prove the hardness for a larger logic, 𝒜ℒ𝒞𝒪𝜀.
Note that, although the addition of nominals does not increase the complexity, we treat 𝒜ℒ𝒞𝜀

in a separate section, both to show how 𝜀 individuals can be handled in a calculus, and to start
with a simpler formalism without nesting.



4. Reduction of 𝒜ℒ𝒞𝒪𝜀 to 𝒜ℒ𝒞𝒪𝑢

The treatment of 𝜀-individuals in 𝒜ℒ𝒞𝜀 was simplified by the fact they do not occur in concepts,
and thus cannot be nested. The situation changes when the language is extended to allow
individual descriptions to appear inside concepts, as is the case in DLs with nominals, such
as 𝒜ℒ𝒞𝒪. In this section, we study the extension 𝒜ℒ𝒞𝒪𝜀 of this logic with 𝜀-individuals.
Rather than extending our tableau calculus, we propose a reduction of 𝒜ℒ𝒞𝒪𝜀 to 𝒜ℒ𝒞𝒪𝑢, the
extension of 𝒜ℒ𝒞 with nominals and the universal role. This reduction-based approach enables
us to rely on existing results for 𝒜ℒ𝒞𝒪𝑢, and offers the practical advantage of supporting the
reuse of existing theorem prover implementations for reasoning with 𝜀-individuals.

Definition 12 (Syntax of 𝒜ℒ𝒞𝒪𝜀). Concepts and individual descriptions in 𝒜ℒ𝒞𝒪𝜀 are defined
by extending Definition 1 with concepts of the form {𝜏}, called nominals, with 𝜏 an individual
description. Then, 𝒜ℒ𝒞𝒪𝜀 axioms and KBs are defined the same as for 𝒜ℒ𝒞𝜀 in Definition 1.

For example, 𝜀.({𝜀.𝐶}⊔{𝜀.𝐷}) is an𝒜ℒ𝒞𝒪𝜀 individual description with nested 𝜀-individuals.

Definition 13 (Semantics of 𝒜ℒ𝒞𝒪𝜀). Interpretations ℐ = (∆ℐ , ·ℐ) for 𝒜ℒ𝒞𝒪𝜀 extend Defini-
tion 2 by interpreting {𝜏}ℐ = {𝜏ℐ} for every individual description 𝜏 . Intensionality, satisfaction,
and ( intentional) satisfiability then applies to 𝒜ℒ𝒞𝒪𝜀 as in Definitions 2 and 3.

Although we do not adopt the UNA, we can express 𝜏1 ̸= 𝜏2 in 𝒜ℒ𝒞𝒪𝜀 as {𝜏1} ⊓ {𝜏2} ⊑ ⊥.
As said above, we next reduce 𝒜ℒ𝒞𝒪𝜀 reasoning to reasoning in the standard DL 𝒜ℒ𝒞𝒪𝑢.

Formally, it is the same as 𝒜ℒ𝒞𝒪𝜀 except that it does not allow for 𝜀-individuals, but uses 𝑁𝑅

extended with a special role 𝑢 that is interpreted as ∆ℐ ×∆ℐ in every interpretation ℐ .

Definition 14 (Reduction of 𝒜ℒ𝒞𝒪𝜀). Let 𝑎𝐶 be a fresh unique individual name for each concept
𝐶 . Then, the 𝒜ℒ𝒞𝒪𝑢 reduction of an 𝒜ℒ𝒞𝒪𝜀 KB 𝒦 is the 𝒜ℒ𝒞𝒪𝑢 KB obtained from 𝒦 by
first adding, for every 𝜀-individual 𝜀.𝐶 mentioned in 𝒦, the ABox axiom (¬∃𝑢.𝐶 ⊔ 𝐶)(𝜀.𝐶), and
then replacing, in each axiom (including the ones added at the first step), every occurrence of an
𝜀-individual 𝜀.𝐶 that is not part of another 𝜀-individual with 𝑎𝐶 .

We now show that this reduction indeed preserves the satisfiability of KBs. The key part of
the proof is the iterative construction of an 𝒜ℒ𝒞𝒪𝜀 intentional interpretation from an 𝒜ℒ𝒞𝒪𝑢

interpretation. This construction is not trivial as it must guarantee the intensionality not only
for the 𝜀-individuals occurring in the KB, but for all such individuals.

Theorem 15. An 𝒜ℒ𝒞𝒪𝜀 KB is intensionally satisfiable if and only if its 𝒜ℒ𝒞𝒪𝑢 reduction is
satisfiable.

Proof sketch. Let 𝒦 be a 𝒜ℒ𝒞𝒪𝜀 KB and 𝒦* be its 𝒜ℒ𝒞𝒪𝑢 reduction.
For the forward direction, assume that ℐ |= 𝒦 for an intentional interpretation ℐ . Define

the 𝒜ℒ𝒞𝒪𝑢-interpretation ℐ* with ∆ℐ*
= ∆ℐ as follows. For each concept, role, or individual

name 𝑥 in the language of 𝒦, set 𝑥ℐ
*
= 𝑥ℐ , and for each 𝑎𝐶 obtained from the corresponding

𝜀.𝐶 , set 𝑎ℐ
*

𝐶 = 𝜀.𝐶ℐ . It follows immediately from the definitions that 𝐶ℐ = (𝐶*)ℐ
*

for every
concept 𝐶 appearing in 𝒦 and its corresponding replacement 𝐶* as in Definition 14, and hence
all axioms in 𝒦* that are reductions of the axioms in 𝒦 are satisfied by ℐ*. Moreover, the



reductions of the added axioms (¬∃𝑢.𝐶 ⊔ 𝐶)(𝜀.𝐶) are also satisfied, which can be shown by
simple analysis of two cases: whether (𝐶*)ℐ

*
is empty or not.

For the backward direction, let ℐ* |= 𝒦* for an interpretation ℐ*. We construct an 𝒜ℒ𝒞𝒪𝜀-
interpretation ℐ as the limit of interpretations, each handling subsequent ‘layers’ of 𝜀-nesting. To
this end, we first let𝑋0 be the union of𝑁𝐶 , 𝑁𝑂 , 𝑁𝑅, and the set of all 𝜀.𝐶 such that 𝐶 contains
no individual descriptions, and then, for each 𝑛 ≥ 0, let 𝑋𝑛+1 be the set of all 𝜀.𝐶 such that 𝐶
mentions at least one individual description from 𝑋𝑛 and all individual descriptions mentioned
in it are from 𝑋1, . . . , 𝑋𝑛. Using these sets, we next construct a sequence of interpretations
ℐ𝑛, 𝑛 ≥ 0. First, we let ℐ0 be defined as follows: ∆ℐ0 = ∆ℐ*

; then for each concept, role, and
individual name 𝑥, we let 𝑥ℐ0 = 𝑥ℐ

*
; then, for each 𝜀.𝐶 ∈ 𝑋0, if 𝑎𝐶 appears in 𝒦*, then we

set 𝜀.𝐶ℐ0 = 𝑎ℐ
*

𝐶 , and otherwise we set 𝜀.𝐶ℐ0 = 𝑓(𝐶ℐ*
), where 𝑓 is a choice function; finally,

for every other 𝜀.𝐶 , we set 𝜀.𝐶ℐ0 = 𝑑 for an arbitrary 𝑑 ∈ ∆ℐ0 (note that, for ℐ , the latter
will be all redefined later). Then, for each 𝑛 ≥ 0, we define ℐ𝑛+1 as follows: ∆ℐ𝑛+1 = ∆ℐ𝑛 ;
for each 𝜀.𝐶 ∈ 𝑋𝑛+1, if 𝑎𝐶 appears in 𝒦*, then we set 𝜀.𝐶ℐ𝑛+1 = 𝑎ℐ

*
𝐶 , and otherwise, we set

𝜀.𝐶ℐ𝑛+1 = 𝑓(𝐶ℐ𝑛), where 𝑓 is again a choice function; finally, for every other concept, role
name, or individual description 𝑥, we set 𝑥ℐ𝑛+1 = 𝑥ℐ𝑛 . We now define ℐ =

⋃︀
𝑖≥0 ℐ ′

𝑛, where,
for each 𝑛 ≥ 0, ℐ ′

𝑛 is the restriction of ℐ𝑛 to
⋃︀𝑛

𝑖=0𝑋𝑛. We can then show that ℐ is indeed an
intentional interpretation of 𝒦.

To conclude this section, we argue the complexity of reasoning in 𝒜ℒ𝒞𝒪𝜀.

Theorem 16. The problem of 𝒜ℒ𝒞𝒪𝜀 KB satisfiability is EXPTIME-complete.

Proof. The lower bound is argued in Theorem 11. For the upper bound, we can first observe
that the reduction in Definition 14 can be realised in polynomial time, then apply Theorem 15
to reduce our problem to satisfiability of 𝒜ℒ𝒞𝒪𝑢 KBs, and finally apply the observation of
Artale et al. [11] that the result of Passay and Tinchev [20] about the EXPTIME membership
of satisfiability of formulas in Propositional Dynamic Logic extended with nominals and the
universal modality can be easily adapted to satisfiability of 𝒜ℒ𝒞𝒪𝑢 KBs.

5. Concept Subsumption in ℰℒ𝒪𝜀

In this section, we study the impact of adding 𝜀-individuals to the lightweight DL ℰℒ𝒪. As with
plain ℰℒ𝒪, satisfiability in the extended logic ℰℒ𝒪𝜀 is trivial, since all KBs are satisfiable. Thus,
in line with standard practice for ℰℒ-based DLs, our reasoning problem is concept subsumption—
that is, the problem of checking whether a KB 𝒦 entails, over intentional interpretations, an
inclusion axiom 𝐶1 ⊑ 𝐶2. We will write this entailment as 𝒦 |=𝑖𝑛𝑡 𝐶1 ⊑ 𝐶2. We show
that concept subsumption ℰℒ𝒪𝜀 can be reduced to the case where 𝒦 has empty ABox and
all inclusion axioms (including 𝐶1 ⊑ 𝐶2) are in a simple normal form. We then extend the
standard ℰℒ𝒪 concept subsumption algorithm to handle ℰℒ𝒪𝜀 in this form. Before proceeding,
we note that adding 𝜀-individuals to a more standard DL ℰℒ is not very interesting, as concept
subsumption in the resulting logic coincides with concept subsumption in plain ℰℒ.

Definition 17 (ℰℒ𝒪𝜀). Let ℰℒ𝒪𝜀 be the sublanguage of 𝒜ℒ𝒞𝒪𝜀 with the concepts grammar

𝐶 ::= 𝐴 | 𝐶 ⊓ 𝐶 | ∃𝑟.𝐶 | {𝜏} | ⊤.



The semantics of ℰℒ𝒪𝜀 is inherited from 𝒜ℒ𝒞𝒪𝜀, with ⊤ℐ = ∆ℐ for every interpretation ℐ .

We next define the normal form for ℰℒ𝒪𝜀 KBs, which has no ABox and no complex concepts.

Definition 18 (Normal Form). An ℰℒ𝒪𝜀 KB 𝒦 is in normal form if its ABox is empty and
inclusion axioms are of the following forms, where each 𝐶,𝐶1, 𝐶2, 𝐷 is ⊤, a concept name, or a
nominal {𝜏}, for 𝜏 an individual name or an 𝜀-individual 𝜀.𝐴 with a concept name 𝐴:

𝐶 ⊑ 𝐷, 𝐶1 ⊓ 𝐶2 ⊑ 𝐷, 𝐶 ⊑ ∃𝑟.𝐷, ∃𝑟.𝐶 ⊑ 𝐷.

We next show that each ℰℒ𝒪𝜀 KB can be easily normalised.

Proposition 19. For each ℰℒ𝒪𝜀 KB 𝒦, we can construct, in polynomial time, an ℰℒ𝒪𝜀 KB 𝒦′ in
normal form such that, for every axiom 𝜑 in the signature of 𝒦, 𝒦 |=𝑖𝑛𝑡 𝜑 if and only if 𝒦′ |=𝑖𝑛𝑡 𝜑.

Proof sketch. Given an ℰℒ𝒪𝜀 KB 𝒦 we can first eliminate complex concepts in 𝜀-individuals
by replacing each 𝜀.𝐶 in 𝒦 that is not nested within another 𝜀-individual with 𝜀.𝐴𝐶 , for 𝐴𝐶 a
fresh concept name, and adding the corresponding axiom 𝐶 ≡ 𝐴𝐶 (as usual, expressible using
concept inclusions). Then, we can apply usual normalisation as for ℰℒ𝒪.

The following procedure takes as input an ℰℒ𝒪𝜀 KB 𝒦 in normal form and concept names
𝐴,𝐵. This procedure determines whether 𝒦 |=𝑖𝑛𝑡 𝐴 ⊑ 𝐵. Note that the procedure can be
generalised to checking whether 𝒦 |=𝑖𝑛𝑡 𝐶 ⊑ 𝐷 for arbitrary concepts 𝐶,𝐷 by applying the
algorithm to the normalisation of 𝒦 ∪ {𝐴 ≡ 𝐶,𝐵 ≡ 𝐷}, where 𝐴,𝐵 are fresh concept names.

Definition 20 (Entailment Procedure for ℰℒ𝒪𝜀). Let 𝒦 be an ℰℒ𝒪𝜀 KB in normal form and
𝐴,𝐵 be concept names. For each concept𝐶 and role name 𝑟 mentioned in 𝒦, initialise the following
sets of concepts and pairs of concepts, respectively: 𝑆(𝐶) = {𝐶,⊤} and 𝑅(𝑟) = ∅. Update these
sets according to the following rules until no rules can be applied, where the relation⇝𝑅 on concept
pairs is defined so that 𝐶 ⇝𝑅 𝐷 if and only if there exist concepts 𝐶1, . . . , 𝐶𝑘 such that 𝐶1 = 𝐶
or 𝐶1 = {𝜏} for some individual description 𝜏 , (𝐶𝑗 , 𝐶𝑗+1) ∈ 𝑅(𝑟𝑗) for some role name 𝑟𝑗 for
each 𝑗 = 1, . . . , 𝑘 − 1, and 𝐶𝑘 = 𝐷:

(CR1) if 𝐶 ′ ∈ 𝑆(𝐶), 𝐶 ′ ⊑ 𝐷 ∈ 𝒦, and 𝐷 /∈ 𝑆(𝐶), then set 𝑆(𝐶) := 𝑆(𝐶) ∪ {𝐷};

(CR2) if 𝐶1, 𝐶2 ∈ 𝑆(𝐶), 𝐶1 ⊓ 𝐶2 ⊑ 𝐷 ∈ 𝒦, and 𝐷 /∈ 𝑆(𝐶), then set 𝑆(𝐶) := 𝑆(𝐶) ∪ {𝐷};

(CR3) if 𝐶 ′ ∈ 𝑆(𝐶), 𝐶 ′ ⊑ ∃𝑟.𝐷 ∈ 𝒦, and (𝐶,𝐷) /∈ 𝑅(𝑟), then set 𝑅(𝑟) := 𝑅(𝑟) ∪ {(𝐶,𝐷)};

(CR4) if (𝐶,𝐷)∈𝑅(𝑟),𝐷′ ∈𝑆(𝐷), ∃𝑟.𝐷′⊑𝐸 ∈𝒦, and𝐸 /∈𝑆(𝐶), then set 𝑆(𝐶) :=𝑆(𝐶)∪{𝐸};

(CR5) if {𝑎} ∈ 𝑆(𝐶) ∩ 𝑆(𝐷), 𝐴⇝𝑅 𝐷 and 𝑆(𝐷) ̸⊆ 𝑆(𝐶), then set 𝑆(𝐶) := 𝑆(𝐶) ∪ 𝑆(𝐷);

(CR6) if 𝐴⇝𝑅 𝐶 and 𝐶 /∈ 𝑆({𝜀.𝐶}), then set 𝑆({𝜀.𝐶}) := 𝑆({𝜀.𝐶}) ∪ {𝐶}.

Output yes if and only if 𝐵 ∈ 𝑆(𝐴).

The correctness of the algorithm follows from the soundness and completeness theorems.



Theorem 21 (Soundness). Let 𝒦 be an ℰℒ𝒪𝜀 KB in normal form and 𝐴,𝐵 be concept names.
Let ℐ be an intensional interpretation such that ℐ |= 𝒦 and 𝐴ℐ ̸= ∅. The following conditions are
satisfied by the initial sets 𝑆(𝐶) and 𝑅(𝑟) for each two concepts 𝐶,𝐶 ′, and role 𝑟 in the procedure
in Definition 20 applied to 𝒦, 𝐴, and 𝐵:

(I1) 𝐶 ′ ∈ 𝑆(𝐶) =⇒ ℐ |= 𝐶 ⊑ 𝐶 ′,

(I2) (𝐶,𝐶 ′) ∈ 𝑅(𝑟) =⇒ ℐ |= 𝐶 ⊑ ∃𝑟.𝐶 ′.

Moreover, if these conditions are satisfied before the application of a rule, then they are satisfied
after this application.

Proof sketch. For the initial sets, both conditions hold by construction.
Let now 𝑆 and 𝑅 be the sets before the application of a rule. In this sketch, we concentrate

only on the rules relevant to the 𝜀-individuals: (CR5) and (CR6). Since the sets only expand, we
only need to show that the conditions are satisfied for the added elements (which means, in
particular, that in this sketch we concern only about (I1)).

Let the rule be (CR5). Since 𝐴⇝𝑅 𝐷, there are 𝐶1, . . . , 𝐶𝑘 such that 𝐶1 = 𝐴 or 𝐶1 = {𝜏},
𝐶𝑘 = 𝐷, and (𝐶𝑗 , 𝐶𝑗+1) ∈ 𝑅(𝑟𝑗) for some 𝑟𝑗 for each 𝑗. Since 𝐴ℐ ̸= ∅ and, by definition,
{𝜏}ℐ ̸= ∅, we have 𝐶ℐ

1 ̸= ∅. Thus, by definition of⇝𝑅 and condition (I2), 𝐷ℐ ̸= ∅. Since,
𝐷ℐ ⊆ {𝑎ℐ} and 𝐶ℐ ⊆ {𝑎ℐ} by (I1), we conclude that 𝐶ℐ ⊆ {𝑎}ℐ = 𝐷ℐ . As such, if some 𝐶 ′

is in 𝑆(𝐷) (and thus in 𝑆(𝐶) after the rule application), we have 𝐶ℐ ⊆ 𝐷ℐ ⊆ (𝐶 ′)ℐ as needed.
Let the rule be (CR6). As for (CR5), 𝐶ℐ ̸= ∅. Since ℐ is intensional, we have 𝜀.𝐶ℐ ∈ 𝐶ℐ .

Theorem 22 (Completeness). Let 𝒦 be an ℰℒ𝒪𝜀 KB in normal form,𝐴,𝐵 be concept names, and
𝑆, 𝑅 be sets of concepts and pairs of concepts, obtained by the procedure in Definition 20 applied to
𝒦, 𝐴, and 𝐵 so that no further rules can be applied. Then, 𝒦 |=𝑖𝑛𝑡 𝐴 ⊑ 𝐵 implies 𝐵 ∈ 𝑆(𝐴).

Proof. Let 𝒦 |=𝑖𝑛𝑡 𝐴 ⊑ 𝐵, but assume that 𝐵 /∈ 𝑆(𝐴). We will construct an intensional
interpretation ℐ such that ℐ |= 𝒦, but 𝐴ℐ ̸⊆ 𝐵ℐ .

Let𝐶 ∼ 𝐶 ′ for concepts𝐶 and𝐶 ′ if and only if𝐶 = 𝐶 ′ or there is some {𝑎} ∈ 𝑆(𝐶)∩𝑆(𝐶 ′).
The inapplicability of rule (CR6) implies that ∼ is an equivalence relation. Moreover, for each
𝐶,𝐶 ′, 𝐷 such that 𝐶 ∼ 𝐶 ′ and for each 𝑟 ∈ 𝑁𝑅, we have 𝑆(𝐶) = 𝑆(𝐶 ′) and (𝐶,𝐷) ∈ 𝑅(𝑟)
implying (𝐶 ′, 𝐷) ∈ 𝑅(𝑟). Indeed, the former follows from the inapplicability of rule (CR5).
For the latter, note that there must be some iteration of the procedure where (𝐶,𝐷) is added
to 𝑅(𝑟) by rule (CR3). Thus, there is some 𝐶1 ∈ 𝑆(𝐶) with 𝐶1 ⊑ ∃𝑟.𝐷 ∈ 𝒦. By the former,
𝑆(𝐶) = 𝑆(𝐶 ′), and so 𝐶1 ∈ 𝑆(𝐶 ′). Thus, (𝐶 ′, 𝐷) ∈ 𝑅(𝑟) since rule (CR3) is not applicable.

We are now ready to construct ℐ . First we set ∆ℐ to be the set of all equivalence classes
[𝐶] over ∼ for concepts 𝐶 such that 𝐴 ⇝𝑅 𝐶 . Then, we set (𝐴′)ℐ = {[𝐶] | 𝐴′ ∈ 𝑆(𝐶)}
for each concept name 𝐴′ such that 𝐴 ⇝𝑅 𝐴′ and (𝐴′)ℐ = ∅ for each other concept name
𝐴′. Moreover, we set 𝑟ℐ = {⟨[𝐶], [𝐷]⟩ | (𝐶,𝐷) ∈ 𝑅(𝑟)} for each role name 𝑟. Finally, we
set 𝜏ℐ = [{𝜏}] for each individual description 𝜏 with 𝐴 ⇝𝑅 {𝜏}, and, for other individual
descriptions 𝜏 , 𝜏ℐ = [𝐴] if 𝜏 is an individual name and 𝜏ℐ = 𝑓((𝐴′)ℐ) for a choice function 𝑓
on ∆ℐ if 𝜏 = 𝜀.𝐴′ (recall that 𝑓(∅) is an arbitrary element by definition of a choice function).

Interpretation ℐ is intensional: for each concept name 𝐴′ with (𝐴′)ℐ ̸= ∅, if 𝐴⇝𝑅 {𝜀.(𝐴′)},
(𝜀.(𝐴′))ℐ ∈ (𝐴′)ℐ since (CR6) is inapplicable, and otherwise 𝜀.𝐶ℐ = 𝑓(𝐶ℐ) ∈ 𝐶ℐ .

The rest of the proof is mostly a result of the following claim.



Claim 23. For each [𝐶] ∈ ∆ℐ and 𝐷 as in Definition 18, [𝐶] ∈ 𝐷ℐ if and only if 𝐷 ∈ 𝑆(𝐶).

Proof. Consider each possible form of 𝐷. If 𝐷 = ⊤ then the claim follows since ⊤ ∈ 𝑆(𝐶).
If 𝐷 is a concept name, then it follows by construction of 𝐷ℐ . Finally, let 𝐷 = {𝜏}. On the
one hand, [𝐶] ∈ {𝜏}ℐ implies 𝜏ℐ = [𝐶], [𝐶] = [{𝜏}] by definition of 𝜏ℐ , and, since {𝜏} is in
𝑆({𝜏}) initially and [{𝜏}] ∼ 𝐶 , we have {𝜏} ∈ 𝑆(𝐶). On the other hand, if {𝜏} ∈ 𝑆(𝐶), we
have [𝐶] = [{𝜏}] by definition of ∼, and so 𝜏ℐ = [𝐶], implying [𝐶] ∈ {𝜏}ℐ .

In order to show that 𝐴ℐ ̸⊆ 𝐵ℐ , we observe that [𝐴] ∈ 𝐴ℐ by construction, but, by Claim 23,
[𝐴] /∈ 𝐵ℐ , since 𝐵 /∈ 𝑆(𝐴).

We are left to show that ℐ |= 𝒦. To this end, consider each form of an axiom in 𝒦.
Let 𝐶 ⊑ 𝐷. For every 𝐶 ′ with [𝐶 ′] ∈ 𝐶ℐ , we have 𝐶 ∈ 𝑆(𝐶 ′) by Claim 23. Since rule (CR1)

is inapplicable, 𝐷 ∈ 𝑆(𝐶 ′), and so [𝐶 ′] ∈ 𝐷ℐ also by Claim 23.
Let 𝐶 ⊑ 𝐶1 ⊓ 𝐶2. This case is similar to the previous one, except that we use rule (CR2).
Let 𝐶 ⊑ ∃𝑟.𝐷. For each 𝐶 ′ with [𝐶 ′] ∈ 𝐶ℐ , 𝐶 ∈ 𝑆(𝐶 ′) by Claim 23. Since rule (CR3) is

inapplicable, (𝐶 ′, 𝐷) ∈ 𝑅(𝑟). Then, ⟨[𝐶 ′], 𝐷⟩ ∈ 𝑟ℐ implies [𝐷] ∈ 𝐷ℐ and so [𝐶 ′] ∈ (∃𝑟.𝐷)ℐ .
Let ∃𝑟.𝐶 ⊑ 𝐷. For each 𝐷′ with [𝐷′] ∈ (∃𝑟.𝐶)ℐ , there exists some [𝐶 ′] ∈ ∆ℐ such that

⟨[𝐷′], [𝐶 ′]⟩ ∈ 𝑟ℐ and [𝐶 ′] ∈ 𝐶ℐ . Thus, there is some 𝐶 ′′ ∈ [𝐶 ′] such that (𝐷′, 𝐶 ′′) ∈ 𝑅(𝑟).
Since [𝐶 ′′] = [𝐶 ′] ∈ 𝐶ℐ , we have 𝐶 ∈ 𝑆(𝐶 ′′) by Claim 23, and so 𝐷 ∈ 𝑆(𝐷′) since rule (CR4)
is inapplicable. Finally, Claim 23 gives us [𝐷′] ∈ 𝐷ℐ , as needed.

Theorem 24 (ℰℒ𝒪𝜀 Correctness). Given an ℰℒ𝒪𝜀 KB𝒦 in normal form and concept names𝐴,𝐵,
the procedure of Definition 20 terminates. Moreover, 𝒦 |=𝑖𝑛𝑡 𝐶 ⊑ 𝐷 if and only it answers yes.

Proof. First, observe that the procedure is always terminating, because both 𝑆 and𝑅 are subsets
of finite sets and every rule increases one such set; nothing is ever removed. The soundness
and completeness follow from Theorems 21 and 22.

Finally, we show that the complexity of concept subsumption in ℰℒ𝒪𝜀 is the same as in ℰℒ.

Theorem 25. Concept subsumption in ℰℒ𝒪𝜀 is PTIME-complete.

Proof. The lower bound is inherited from ℰℒ, for which it follows from the PTIME-completeness
of satisfiability of propositional Horn clauses [21]. The upper bound is by Proposition 19 and
since the procedure in Definition 20 is polynomial, because no rules remove any elements from
the sets and there only polynomial number of possible elements in total.

6. Conclusion

In this paper, we studied the effect of adding Hilbert-style 𝜀-individuals with intensional
semantics to the description logics 𝒜ℒ𝒞, 𝒜ℒ𝒞𝒪, and ℰℒ𝒪. We demonstrated that existing
reasoning algorithms, including tableaux for 𝒜ℒ𝒞 satisfiability and TBox saturation for ℰℒ𝒪
concept subsumption, can be extended to 𝜀-individuals; however, the proofs of correctness
of these algorithms—especially completeness—are far from trivial. In most cases (but not
always), the complexity of reasoning is also preserved. For future work, we suggest studying
the extensional semantics of 𝜀-individuals in the context of DLs. The inclusion of reasoning
about 𝜀-individuals in other calculi for DL, such as hyper-tableaux [22], is also interesting.
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