The Shape of £L£ Proofs: A Tale of Three Calculi
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Abstract

Consequence-based reasoning can be used to construct proofs that explain entailments of description
logic (DL) ontologies. In the literature, one can find multiple consequence-based calculi for reasoning in
the £L family of DLs, each of which gives rise to proofs of different shapes. Here, we study three such
calculi and the proofs they produce on a benchmark based on the OWL Reasoner Evaluation. The calculi
are implemented using a translation into existential rules with stratified negation, which had already
been demonstrated to be effective for the calculus of the ELk reasoner. We then use the rule engine NEmo
to evaluate the rules and obtain traces of the rule execution. After translating these traces back into DL
proofs, we compare them on several metrics that reflect different aspects of their complexity.
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1. Introduction

Consequence-based reasoning for DLs has a long tradition, starting from the first reasoning
algorithms for £L£ with general concept inclusions [1, 2], all the way up to expressive DLs like
ALCHOZQ [3, 4]. Due to its favorable computational properties, it is employed in several
reasoners, such as ELk, KONCLUDE, and SEQUOIA [5, 6, 7]. Another advantage of consequence-
based approaches is the possibility to extract proofs consisting of step-wise derivations, in order
to explain consequences of the ontology to an ontology engineer. In principle, the relatively
simple rules of a reasoning calculus can immediately be used to construct proofs. However, in
practice, this would have to be implemented by each consequence-based reasoner, and is so
far only supported by ELk [8]. Several approaches have been developed to extract proofs from
reasoners in a black-box fashion [9, 10, 11], which do not use a fixed set of rules and often lead
to more complicated proof steps, but smaller proofs overall [12]. Our main research question
is how proofs resulting from consequence-based calculi differ based on the shape of the rules.
Specifically, we explore which calculi may be more appropriate in certain scenarios—for instance,
producing proofs suitable for specific types of visualizations, or ones in which information is
introduced and resolved locally, resulting in a reasoning structure that is easier to follow. We
investigate this on three calculi for the ££ family of description logics [2, 5, 13].

We follow an approach to encode DL reasoning into (an extension of) Datalog rules [14, 15, 16].
To execute these rules, we use NEMo, a Datalog-based rule engine that is easy to use and
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offers many advanced features, such as datatypes, existential rules, aggregates, and stratified
negation [16]. This has already been demonstrated to be effective for the reasoning calculus of
ELK, including pre-processing of the ontology in OWL format,' which essentially implements an
& EI reasoner by existential rules with stratified negation [16]. The advantage of this approach
is that one can relatively quickly implement new reasoning procedures with low effort.

In this paper, we also consider two other calculi for ££-based logics from the literature: the
original ££ calculus, denoted by ENVELOPE [2] (restricted to ££7, i.e., without nominals
and concrete domains), and the £L calculus TEXTBoOK [13] (extended to ELH |, i.e., with role
hierarchies and ). The modifications to the calculi allow us to compare them on a dataset of
ELH ) reasoning tasks extracted from the 2015 OWL Reasoner Evaluation (ORE) [17]. After
encoding them into rules as for the ELk calculus, we use the tracing capabilities of NEmo
to compute proofs for the derived consequences. However, since NEmo traces are based on
translated rules and may include statements not expressible as DL axioms (e.g., side conditions),
we must still transform them to obtain DL proofs suitable for inspection by ontology engineers.
Finally, we compare the shape of the resulting proofs using several measures, such as the size,
depth, directed cutwidth [18], and cognitive complexity of inference steps [19].

2. Calculi and Proofs

Let N¢ and Ny be two disjoint, countably infinite sets of concept- and role names, respectively.
ELT concepts are defined by the grammar C, D == T | L | A| C1 D | 3r.C, where A € N¢
and 7 € Np. Eﬁj axioms are either concept inclusions of the form C' T D or complex role
inclusions of the formry o---or, C r, where r1,...,7,,7 € Ng. An SCI TBox is a finite set
of £ EI axioms. ELH | is the fragment of £ EI that only allows simple role inclusions of the
form r C s. We assume the reader to be familiar with the semantics of these logics, in particular
the definition of entailment of an axiom « from a TBox 7T, written 7 | « [13].

Calculi. We consider three inference calculi for fragments of £ Eir that are tailored towards
classification, i.e., computing all entailments of the form 7 = A C B for A, B € Nc.

Figure 1 shows the inference rules used in the reasoner Erk for ££T TBoxes. Side conditions
are marked in gray, where “C' occurs negatively” means that C' occurs within a concept on the
left-hand side of some axiom in 7, and E;- denotes the precomputed role hierarchy, i.e., the
transitive closure over simple role inclusions. Furthermore, complex role inclusions are assumed
to be in the normal form r; o r3 C 7, using only binary role composition. Axioms with longer
role compositions can be normalized with the help of fresh role names. Then, 7 = A C B
holds iff either A C B or A C | can be derived by these rules from init(A) [5].

Figure 2 shows the TEXTBOOK classification rules for £L£ from [13] with a slight modification
to rule CR5 and the addition of a variant of R from ELK, in order to support ELH | . Here, all
input and derived concept inclusions are required to be of one of the forms A C B, A; M Ay C B,
ALC Jr.Bor3dr.AC B,where A, Ay, A, B are concept names from 7, T or |, which is again
without loss of generality. This calculus is correct in the same sense as the ELk calculus above,
but, instead of the init(A) statement, it is initialized with all axioms of the input TBox 7.

'https://www.w3.org/TR/owl2-overview/
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Figure 1: Optimized ELk calculus [5].
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Figure 2: TExTBOOK calculus [13] with a modified CR5 and added variant of R .

CR1-G =5 ore D _CED:
CR3 cczgaf B cr4 CE 37’-21@ 51 C D,
crs Y E HZDE LD S cmo%
crn CEILD DIk

Figure 3: ENVELOPE calculus [2],

Figure 3 shows the ENVELOPE rules for £ EI from [2], omitting rules CR6-CR9 for nominals
and concrete domains. For a consistent representation, we translate the statements “D € S(C)”
and “(C, D) € R(r)” from the original paper into C' C D and C' T 3r.D, respectively. Note
that C' and D must be concept names from 7, T or L. This calculus requires the concept and
role inclusions in T to be in normal form, and is correct in the same sense as for the other
calculi, but stars only from the tautologies C' C C' and C' C T for all concept names C' from 7.

Proofs. Following the notion introduced in [11], a proof of T = A C B, where A and B are
concept names, is a finite, acyclic, directed hypergraph, where each vertex v is labeled with an

restricted to Sﬁi.
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Figure 4: Example proofs based on ELk (top left), TExTBoOK (top right), and ENVELOPE (bottom)

axiom ¢(v). Hyperedges represent sound inference steps and are of the form (.5, d), where S'is a
set of vertices and d is a vertex s.t. {£(v) | v € S} = £(d); note that the direction of the edge is
from the vertices in S to the vertex d. The leaf vertices (without incoming hyperedges) of a proof
are labeled with axioms from 7, and the unique root (without outgoing hyperedges) is labeled
with A C B. Moreover, to obtain smaller proofs, they are also required to be non-redundant,
which means that the same axiom cannot have multiple subproofs: no two vertices can have
the same label, every vertex can have at most one incoming hyperedge, and a vertex has no
incoming hyperedge iff it is labeled by an axiom from 7. Usually, hyperedges are additionally
distinguished by a label, which corresponds to the rule name from a calculus. However, for
simplicity, we dispense with hyperedges altogether and simply view proofs as directed acyclic
graphs (with edges pointing towards the root) without rule names. The children of a vertex v
are then the premises of the (unique) inference step that was used to derive ¢(v). The label of
a vertex without predecessors must then be either from 7 or a tautology that can be derived
using a rule without premises. Moreover, since most proof visualizations [20, 21] are based
on tree-shaped proofs, we only consider the tree-shaped unravelings of these directed acyclic
graphs in the following (see Figure 4). Thus, there can be multiple vertices with the same label,
but they must have isomorphic subproofs (subtrees).

Consider, for example, the TBox7 = {AC B, BC 3r.C,CC D, 3t.DC E, rCs, sCt}
and the entailment 7 |= A C E. Since proofs are to be inspected by ontology engineers, they
are restricted to DL axioms. This means, however, that they cannot include side conditions and
statements that are not DL axioms (e.g., init(C')). Thus, we have to adapt the calculus rules
before we can use them as inference steps in proofs.

We treat side conditions of the form C' T D € T as ordinary premises C' C D, since they
are DL axioms. However, this does not mean that R from ELK is now equivalent to CR3 from
TEXTBOOK, since the second premise in the former is still restricted to axioms from 7.



Similarly, we treat side conditions r E;- s as premises r C s. However, to obtain a valid
proof, we also have to derive these axioms from the TBox. For both the Erk and the TExTBOOK
calculus, we therefore add the following two rules:

st

tCt rC¢

Next, we replace statements of the form C' s F in the E1x calculus by C' C Jr.E, which
preserves the soundness of the inference rules, and is similar to the treatment of “(C, D) € R(r)”
in the ENVELOPE calculus. We also omit init(C') statements, meaning that Ry and Ry from ELx
become similar to CR1 and CR2 from TEXTBOOK, but they may only appear in a proof if init(C')
was actually derived by the original rules. We also add CR1 and CR2 to the ENVELOPE calculus
to express the initialization step, which does not correspond to explicit rules in [2]. For the ELk
and ENVELOPE calculi, which are not explicitly initialized with the TBox axioms, this results in
proofs such as the following:

AC A ACB
ACB
However, this violates non-redundancy since A C B has multiple non-isomorphic proofs. In
such cases, we keep only a subproof of minimal size (in the example, only the leaf A C B). This
also applies to other inference rules, for example, R3-, which now trivially derives C' C Jr.F
from C' C Jdr.E. Thus, due to the above simplification, this rule will never appear in a proof.

We also omit the side conditions of the form “X occurs negatively in 7 ”. To represent them
in our proofs, we could add the axiom in which X occurs negatively as a premise; however,
this axiom is not logically necessary for the inference step, and may be confusing because it
has no connection to the inference other than the occurrence of X. For example, consider the
following application of RY, which also requires that 3¢.D occurs negatively in 7

AC Ir.C ccbhD rCt
AC3t.D

We could add 3¢.D C F as a premise to express the side condition, but this axiom is not required
to derive A C 3t.D. Moreover, since 3t.D C F is also used in the subsequent application of
Rc, having it appear in two consecutive steps—while only being necessary for one—may be
unnecessarily confusing,.

The proofs resulting from all these considerations can be seen in Figure 4, where we draw them
as trees to emphasize their shape, which we analyze in the following. Despite the transformations
and simplifications we applied, the three calculi can still result in substantially different proofs,
even for such a simple entailment.

3. Measures

We evaluate the shape of proofs by several measures from the literature, which reflect different
aspects of how ontology engineers can inspect a proof in different representations (see Figure 5).

Size. The size of a proof [11] is the number of occurrences of axioms in the proof tree. For
example, if ontology engineers need to inspect the whole proof because they are unfamiliar



| — —
(c—) —
(c—) — > QF
o —D c— R D C D ¢ )
; — — 5 & ‘/&(
- D o — |
D C:} justification size
(c—) — >
1 (c—) ()
e

depth cutwidth

Figure 5: Different visual representations of a proof: nested list (left), linear (middle), proof tree (right).

with the ontology, the size of the proof influences how much time they will need to inspect
it. The size is proportional to the height of a linear representation of the proof or a nested list
visualization as in a file browser, e.g., in the proof explanation plugin for Protégé [20].

Depth. The depth of a proof [22] is the length of the longest path from a leaf to the root. This
is related to the task of finding an error in the ontology based on an erroneous inference. In
this case, ontology engineers would rather inspect the proof only along the “most suspicious-
looking” branch (or a few such branches), and thus the time they may need in the worst case
depends on the length of the longest branch. The depth is also proportional to the height of a
more traditional proof-tree representation, as used in EVONNE [21].

The width of such a tree visualization, assuming that adjacent subtrees are non-overlapping
in the sense that nodes from one subtree are not positioned vertically above nodes from another
subtree, can be expressed as a function of the number of leafs in the proof, which is also called
its justification size [23]. However, we do not consider the justification size in this paper, since
it does not depend on the reasoning calculus.

Cutwidth. The (directed) cutwidth of a graph tries to measure how linear it is [18]. Given a
linear vertical arrangement of a proof’s nodes [21], the cutwidth is the maximal number of edges
that would be affected when cutting the graph horizontally between any two consecutive nodes
(see Figure 5). The cutwidth of the graph is then the minimum of the cutwidths of all possible
such linear arrangements. Hence, it is proportional to the maximal number of intermediate
axioms an ontology engineer needs to keep in memory when reading the proof in such an
(optimal) linear representation from top to bottom.

Bushiness Score. We developed another score to measure how “bushy” (non-linear) a proof is.
It is computed as the ratio between the size of the proof and its depth (+1 for the root). Hence,
it can be interpreted as the average number of vertices per level (see Figure 5). A completely
linear proof in which all inference steps have only one premise results in a bushiness score of 1
(not bushy at all), and the full binary tree with five levels gets a score of % = 6.2 (very bushy).

Step Complexity. Finally, we consider a measure based on the cognitive complexity of
inference steps, which has been proposed in the context of justifications, and has been evaluated
in user studies [19]. It reflects multiple aspects of the syntactical structure of the argument,



such as the depth of involved concepts, how many constructors and axiom types are used, or
whether it uses the triviality of a concept name (i.e., being equivalent to L or T). Here, we
consider the average of the step complexities of the individual inference steps in the proof.

4. Directed Cutwidth on Trees

Computing cutwidth is NP-complete in general [18], and the general-purpose implementations
we tried could not compute the metric for our complete evaluation set in a feasible time. The
problem becomes polynomial on trees [24], but the algorithm is complicated, and we are
not aware of any implementation. Directed cutwidth on trees, however, admits a far simpler
algorithm, which we now introduce and prove to be correct, since we could not find any
publication that establishes this result.

Consider a tree T' = (V, E) with vertices V and directed edges E pointing towards the leafs.”
A serialization of T is a word S € V* that contains each vertex v € V' at a unique position
vs € {1,...,|V]} such that (v, w) € E implies vg < wg. Fori € {1,...,|V|—1}, the number
of edges cut in the ith gap between vertices in S is cut(i) = |{{v,w) € E | vs < i < wg}|. The
cutwidth cw(S) of S is max; <;|y| cut(i), and the directed cutwidth cw(T') of T is the minimal
cutwidth of any serialization of T'. The out-degree of any vertex in 7" is a lower bound for its
directed cutwidth, though it can be higher (e.g., for a full binary tree 7', cw(T) is depth + 1).
We omit directed below, since we consider no other kind of cutwidth on trees.

Definition 1. The standard serialization S(7T') of a tree T' = (V| E) is defined inductively. If
V = {v}, then S(T') := v. If|V| > 1, then letr be the root of T' and let C1, . . ., Cy be its direct sub-
trees, ordered such that i < j implies cw(S(C;)) < cw(S(C))); then S(T') := rS(Cy) - - - S(Cy).

For non-singleton trees 7', each of the sub-sequences S(C;) has ¢ — i “overarching” edges
from the root to the roots of later C};, j > i (see also Figure 5). Therefore, if the root of T" has
¢ children, cw(S(T')) = max({£} U {cw(S(C;)) + ¢ —i |1 < i < (}). Itis easy to compute
S(T') and cw(S(T")) in a bottom-up fashion. To do this in small steps, after computing S(C;)
and cw(S(C;)) for all child trees C; of a vertex r, we can add the children C; to r one by one,
in an order of non-decreasing cutwidth. The following lemma is the key to showing that this
recursive procedure yields, for each partial subtree (with only some child trees added yet), the
exact cutwidth. Its proof can be found in the extended version of the paper [25].

Lemma 1. Fori € {1,2}, let T; be a tree with root r; and cutwidth w; = cw(T;) = cw(S;) for an
optimal serialization S;. Assume that C, ..., Cy are the direct child trees below r1 in an order of
non-decreasing cutwidth, and that wy > cw(C;) forall1 < i < (. Then the tree T' obtained from
T, by adding Ty as an additional direct child tree belowry has cutwidth cw(T') = max(wy+1, we),
and an optimal serialization is 51.53.

Now we can perform an easy induction over the structure of 7" to show that the recursive
computation of cw(S(T")) produces cw(7T'). The induction base are single-node trees (leafs),
and the step is Lemma 1.

Theorem 1. Fortrees T, cw(T') = cw(S(T")), which can thus be computed in polynomial time.

*This edge direction is more intuitive for this section, but our results are readily applied to proof trees with edges
oriented the other way (see Figures 4 and 5). Indeed, directed cutwidth is the same for the dual ordering.



5. Implementation

We now describe the encoding of the calculi into existential rules with stratified negation in
NEMO syntax, and the subsequent translation of rule-based reasoning traces into DL proofs. We
have implemented this in the DL explanation library EVEE.’

5.1. Existential Rules

The implementation of the ELK calculus in existential rules with stratified negation is split into
three stages [16]. The first stage consists of RDF import and normalization. Here, the input OWL
ontology is translated into facts over several predicates with the prefix nf. These facts serve as
the input for the calculus, e.g., nf : subClassOf (A,B) for A C B € T.* The normalization
takes advantage of the OWL RDF encoding, which already contains a blank node for each com-
plex concept that can be used as an auxiliary concept name identifying that concept. For example
nf:exists(?C, ?R, ?D) states that ?C is an auxiliary concept name representing the existen-
tial restriction with role ?R and filler concept ?D. All such auxiliary concept names are marked
by the predicate auxClass, which allows identifying the named concepts occurring in the
input ontology using the rule nf:isMainClass(?X) :- class(?X), ~auxClass(?X)
Auxiliary role names are treated similarly. Since there can be multiple blank nodes denoting the
same complex concept, there are additional existential rules that create unique representatives
for these concepts, in order to avoid redundant computations. Additionally, the normalization
stage precomputes the role hierarchy C7- in the predicate nf : subProp.

The second stage consists of the actual inference rules of the ELk calculus, which derive addi-
tional facts over predicates with the prefix inf. Due to the normalization, the implementation
of these rules is straightforward and close to the original calculus, for example for the rule Rc:

inf:subClassOf (?C,?E) :- inf:subClassOf(?C,?D), nf:subClassOf(?D, ?E)

In the third stage, the interesting entailments, namely subsumptions between concept names,
are extracted with the help of the inf: subClassOf and nf: isMainClass predicates.

Modifications. We slightly adapted these rules for our purposes. All modifications are confined
to the normalization and extraction; the inference rules of the calculus are not affected.

To the normalization stage, we added an inference rule that derives L T A for each concept
name A in the input, which ensures that C' C A is inferred for any concept C with 7 = C C L.
Such reasoning with the L -concept is handled outside the calculus of Kazakov et al. [5], we
explicitly included it to obtain a complete reasoner for classification.

Next, we updated the precomputation of the role hierarchy, which is recursively computed in
a top-down manner, starting with the largest role in a set of connected role inclusions, rather
than in a bottom-up fashion (as in the original rules).

directSubProp(?R,?S) :- TRIPLE(?R,rdfs:subPropertyoOf, ?S)
nf:subProp(?R,?R) :- nf:exists(?C,?R,?D), nf:isSubClass(?C)
nf:subProp(?R,?T) :- directSubProp(?R,?S), nf:subProp(?S, ?T)

3See https://github.com/de-tu-dresden-inf-lat/evee/tree/nemo-extractor/evee-nemo-proof-extractor
*More precisely, concept names are identified by IR, e.g., <http: //example.org/iriA>, but we omit them here.


https://github.com/de-tu-dresden-inf-lat/evee/tree/nemo-extractor/evee-nemo-proof-extractor

For example, starting from r C s, s C ¢, t T u, we first derive s C u and then r C w.
This modification is necessary, because the original implementation did not compute the role
hierarchy correctly. It started from roles r occurring negatively in 7 (using nf : isSubClass
as above), but only computed the role hierarchy above r, the opposite of what is needed by R;.

We also added support for transitivity and domain axioms by introducing two rules that
translate domain(r, C') into 3r. T T C and trans(r) into 7 o r C r. Moreover, we support the
current OWL 2 encoding of role chains, i.e., owl: propertyChainAxiom, including role chains
with more than two role names. Finally, we added the possibility to prove equivalence axioms
C = D directly from C C Dand D C C.

Other Calculi. The same normalization is also utilized in the implementation of the TExT-
Book and ENVELOPE calculi, but for those we added the additional normalization predicates
nf:subClassConj (?C, ?D, ?E) for CMND C E, nf:subClassEx(?R, ?C, ?D) fordr.C' C D,
and nf : supClassEx(?C, ?R, ?D) for C' C 3r.D, according to the normal forms expected by
these calculi. The main inference rules of both calculi are implemented as expected, for example

inf:subClassOf (?C,?F) :- inf:supClassEiEx(?C,?R,?D),
inf:subClassOf (?D, ?E), nf:subProp(?R,?S), inf:subClassEx(?S,?E, ?F)

for CR%' from the TExTBOOK calculus, and
R(?C,?R,?E) :- S(?C,?D), nf:supClassix(?D,?R, ?E)

for CR3 from the ENVELOPE calculus, where we used the original names R and S [2].

5.2. Translation to OWL Proofs

NEemo allows us to obtain a trace of how a particular entailment, e.g., inf : subClassOf (A, B),
was obtained using the rules. Such a trace is similar to a DL proof, but the vertices are labeled
with ground facts instead of DL axioms. In the Java class NemoProofParser, we implemented
a translation from such traces into valid DL proofs, which reads a Nemo trace in JSON for-
mat into an IProof<String> object, where each String represents a fact, and outputs an
IProof<OWLAxiom> object’ that can be further processed or again saved in JSON format.

The abstract class AbstractAtomParser, instantiated for each of the three calculi, translates
facts into DL axioms, e.g., inf : subClassOf (A, B) into A C B and nf: supClassEx (A, r,B)
into A C Jr.B. Any fact that does not have a corresponding DL axiom, e.g., inf:init (A), is
translated into L C T, which indicates that the atom is skipped and will not appear in the final
proof (see Section 2). In particular, traces contain many normalization steps that use various
auxiliary predicates, which do not show up in the final DL proof.

Auxiliary concept names that are represented by blank nodes (either from the RDF encoding
or from existential rules) need special treatment, since they would not make sense in the
translated proof. Instead, we replace them by the concepts they denote. Since a fact containing
a blank node, such as inf:subClassOf (A, _:61), does not contain information about the
complex concept the blank node identifies, we need to collect other relevant facts from the trace.

>OWLAxiom is part of the Java OWL API [26].



For example, nf:exists(_:61,t,D) encodes that _:16 stands for 3¢.D. If D is also a blank
node, then we have to recursively consider more facts until we can construct the final concept.

However, this approach does not work is for complex role inclusions with auxiliary role
names. For example, if r o s ot C u is normalized into nf : subPropChain(r,s,_:5) and
nf:subPropChain(_:5,t,u), we cannot simply replace _:5 by r o s, as this would yield
ros C ros, which is not expressible in OWL due to ros on the right-hand side. Still, this axiom is
a tautology, and can be omitted without affecting the correctness of the inference. During reason-
ing, auxiliary roles can appear in existential restrictions, e.g., in inf: supClassiEx(C,_:5,D),
which we translate into multiple nested existential restrictions: C' C Jr.3s.D.

Lastly, after translating the inference steps in the described manner, we minimize the size of the
resulting OWL proof using the MinimalProofExtractor class, which eliminates redundant
inferences and unnecessary tautologies [22]. In particular, this removes all occurrences of
L C T. As aresult, we obtain a correct and complete DL proof from the NEmo reasoning trace.

6. Evaluation

We compared the proofs resulting from the three calculi on a benchmark of 1,573 reasoning
tasks that were extracted from the ORE 2015 ontologies [17, 11]. Each reasoning task consists
of a justification and the entailed axiom, which avoids the overhead of having to deal with
a large ontology and lets us focus on the structure of the inference steps used to prove the
entailments. The benchmark covers all types of entailments that hold in the ORE ontologies,
modulo renaming of concept and role names (and some timeouts). The resulting proofs and
measurements can be found on Zenodo [27]. The extended version of the paper [25] contains
detailed graphs for pairwise comparisons of the calculi.

From the structure of the calculi, we expected proofs of the TExTBoOK calculus to be less
linear and shallower, i.e., have larger directed cutwidth, larger bushiness score and smaller
depth, because it does not restrict any premises of the inference rules to be from the input TBox
(see also Figure 5), and therefore allows for more balanced proof trees. This was confirmed in
the experiments, with the directed cutwidth of TExTBOOK proofs being higher in 1,486 and 1,381
cases compared to ELx and ENVELOPE, respectively, and never lower. Similarly, the bushiness
score is higher for 1,534 and 1,512 proofs, and lower in only 12 and 23 cases, respectively.
Conversely, the depth is lower for 1,503 proofs, and higher in only 8 cases, compared to both
other calculi. We conjecture that the depth of the TExTBoOK proofs is approximately logarithmic
in the depth of the corresponding F1Lk or ENVELOPE proofs, and that the relationship for directed
cutwidth and bushiness score is exponential. On the same three measures, the ELk and ENVELOPE
proofs behave very similarly, with ENVELOPE proofs having slightly higher directed cutwidth
and bushiness score, but nearly identical depth, compared to the ELk proofs.

We also compared directed cutwidth and bushiness score, since they both try to measure how
linear proofs are. We observe that there is indeed a correlation between them; however, whereas
directed cutwidth is always a natural number, bushiness score allows a more fine-grained
comparison of proofs, and also tends to increase faster than the directed cutwidth.

For the remaining measures of size and average step complexity, the ELk calculus is the
outlier, with both lower size (in 1,025 and 584 cases compared to ENVELOPE and TEXTBOOK,



respectively) and lower average step complexity (1,281 and 1,062 proofs, respectively). Here,
EnvELOPE and TEXTBOOK obtain very similar results, with slightly lower values for TEXTBOOK.
There is no clear winner across all the measures we considered. However, depending on
specific use cases, proofs generated using certain calculi may be more preferable. Overall, proofs
generated with the ELk calculus seem to be the better choice for providing explanations of
entailments, since they are smaller and rely on simpler inferences. Additionally, ELk proofs
have lower cutwidth and bushiness scores, indicating that axioms are used as soon as possible in
the proof, which can be an advantage when reading the proofs in a linear format (see Figure 5).
Conversely, the low depth of TExTBOOK proofs may be a better option for other types of
visualizations, since it can reduce the amount of vertical or horizontal scrolling required, which
also allows users to inspect the proof in a more linear manner. Our experiment do not show a
specific advantage for proofs generated using the ENVELOPE calculus over the other two.

6.1. Limitations

The benchmarks are not fully representative of general £ LI proofs, mainly for two reasons.
First, the benchmark does not contain all possible justifications and entailments from the ORE
2015 ontologies, since for some cases it was too costly to compute all justifications [11]. Second,
NEmo always computes only one trace, even if there are different combinations of inference
steps that result in the same axiom. Since this is done by a specific algorithm in NEmo, there is
a systematic bias in the resulting proofs. For example, for the TExXTBOOK calculus, instead of
very bushy proofs, NEmo could also have returned more linear proofs, as for the other calculi.
In this case, NEMoO traces seem to be biased towards smaller depth, which allows us to observe
the differences between the calculi and confirms our initial intuitions. In future work, we plan
to reevaluate this once NEmo is extended to consider all possible traces rather than just one.

7. Conclusion

We compared the proofs obtained from three reasoning calculi for the ££ family of DLs. This
was facilitated by NEMo, a powerful rule engine that allowed us to quickly implement the calculi
without having to develop a dedicated reasoner. As expected, the TExTBoOK calculus [13]
indeed produces more bushy and more shallow proofs, and it turns out that the ELk calculus [5]
generally yields smaller proofs whose inference steps are on average less complex [19]. This
enables us to choose specific calculi for different purposes, e.g., to show proofs in a visualization
format where the screen space is restricted either horizontally or vertically, or when the goal is
to be able to understand individual inference steps more quickly. In the future, we want to apply
this method to consequence-based calculi for more expressive logics, e.g., ALC and beyond.
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