
Containment of Conjunctive LTL Queries
Jean Christoph Jung1, Vladislav Ryzhikov2, Frank Wolter3 and
Michael Zakharyaschev2

1

TU Dortmund University, Otto-Hahn-Straße 12, 44227 Dortmund, Germany

2

Birkbeck, University of London, Malet Street, London WC1E 7HX, UK

3

University of Liverpool, Ashton Street, Liverpool L69 3BX, UK

Abstract
We investigate the computational complexity of the containment problem for conjunctive queries given
in linear temporal logic LTL with the operators ‘eventually’ and ‘next-time’. We show that this problem
is coNP-complete and identify a few restricted query classes for which containment is tractable (in
LogSpace).

Keywords
Linear temporal logic LTL, conjunctive query, query containment, computational complexity.

1. Introduction

Our concern in this paper is the containment problem for very basic temporal conjunctive
queries that are built from atoms—propositional variables representing atomic events and
⊤—using conjunction and the temporal operators ○ (at the next moment) and ◇ (sometime
later) from the linear temporal logic LTL. Such queries are supposed to be evaluated over data
instances that consist of facts of the form 𝐴(ℓ) stating that atomic proposition 𝐴 is true at time
ℓ, for ℓ ∈ N. This setting is relevant to applications in numerous areas ranging from temporal
databases and streams to temporal ontology-based data access, pattern matching and learning;
see the Motivation and Related Work section below for some details and references.

Using the fact that our queries correspond to tree-shaped conjunctive queries, it is readily
seen that the query evaluation problem—given a query 𝑞, a data instance 𝒟, and a timestamp
ℓ from the temporal domain of 𝒟, decide whether 𝑞 is true at ℓ in the model determined by
𝒟—is decidable in polynomial time (in the size of 𝒟 and 𝑞). The containment problem for these
queries turns out to be more interesting.

Recall that the query containment problem is to decide, given any queries 𝑞 and 𝑞′, whether,
for every data instance 𝒟, the answers to 𝑞 over 𝒟 are contained in the answers to 𝑞′ over 𝒟.
Our main result in this paper proves that query containment for our most expressive query
language is non-tractable and coNP-complete. It is the hardness part of the result that is of

DL 2025: 38th International Workshop on Description Logics, September 3–6, 2025, Opole, Poland

$ jean.jung@tu-dortmund.de (J. C. Jung); vlad@dcs.bbk.ac.uk (V. Ryzhikov); wolter@liverpool.ac.uk (F. Wolter);
michael@dcs.bbk.ac.uk (M. Zakharyaschev)
� 0000-0002-4159-2255 (J. C. Jung); 0000-0002-6847-6465 (V. Ryzhikov); 0000-0002-4470-606X (F. Wolter);
0000-0002-2210-5183 (M. Zakharyaschev)

© 2025 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

mailto:jean.jung@tu-dortmund.de
mailto:vlad@dcs.bbk.ac.uk
mailto:wolter@liverpool.ac.uk
mailto:michael@dcs.bbk.ac.uk
https://orcid.org/0000-0002-4159-2255
https://orcid.org/0000-0002-6847-6465
https://orcid.org/0000-0002-4470-606X
https://orcid.org/0000-0002-2210-5183
https://creativecommons.org/licenses/by/4.0
https://ceur-ws.org
https://ceur-ws.org

interest while the upper bound is more or less straightforward. We also show that, for queries
without ○, containment is in the complexity class L (LogSpace); it is also in L for path queries
with both ○ and ◇.

As we are only considering queries that are existential LTL-formulas (without the operator
‘always in the future’), the containment problem is equivalent to the validity of formulas of the
form 𝑞 → 𝑞′ in finite or infinite temporal models. So, our results also contribute directly to the
research problem of classifying fragments of LTL according to their computational complexity;
see, e.g., [1, 2, 3, 4, 5, 6, 7, 8, 9, 10].

Motivation and Related Work. Temporal data is ubiquitous in the digital world, and there
are numerous applications having our non-relational propositional LTL-queries as a core. For
example, temporal variants of SQL tailored to effectively retrieve information from temporal
databases rely on LTL-operators [11, 12]. In ontology-based data access (OBDA), temporal
conjunctive formulas are often utilised as a core user-friendly language to formulate both queries
and ontology rules; see, e.g., [13] and further references therein as well as more recent [14, 15, 16].
Another recent application of LTL-queries is extraction of (or learning) patterns from temporal
data examples [17]. In this setting, conjunctive LTL-queries, their subclasses such as path
queries and extensions, say with disjunction, have been studied in [18, 19, 20, 21]. Note also
that there is a close link between evaluating path queries and algorithms for finding patterns in
strings [22, 23], a problem having multiple applications such as DNA analysis in bioinformatics.

Query containment was shown to be NP-complete for standard database conjunctive queries
by reduction to query evaluation in the seminal work [24]. Since then query containment has
been studied for numerous query languages. Most closely related is work on containment for
fragments of XPath [25] and query containment over trees [26]. In these languages, similar to
our work, queries can refer to nodes reachable along the transitive closure of a successor relation.
Very different techniques are used, however, since we assume a linear order instead of a tree.
Our results are also closely related to the work on subsumption in extensions of ℰℒ. Observe
that our queries are notational variants of ℰℒ-concepts with two roles (one corresponding to ○

and the other to ◇). Hence, subsumption between ℰℒ concepts over interpretations, in which
one role is interpreted as the transitive closure of another role, corresponds exactly to query
containment in our language, except that arbitrary interpretations (equivalently, by unfolding,
tree-shaped ones) are considered, and not linear orders. In [27], coNP-hardness is shown for
subsumption in ℰℒ with transitive closure using the technique introduced for XPath in [25].
Again, this technique is not applicable for linear orders.

2. Temporal Data and Queries

Temporal data instances. By a temporal data instance we mean here any finite set 𝒟 ̸= ∅
of facts of the form 𝐴(ℓ), where 𝐴 is a propositional variable, henceforth called an atom,
and ℓ ∈ N. Intuitively, 𝐴(ℓ) says that event 𝐴 happened at time instant ℓ. The signature

sig(𝒟) of 𝒟 is the set of atoms occurring in it. The maximal time ℓ in 𝒟 is denoted by max𝒟.
Where convenient, we also write 𝒟 as the word 𝛿0 . . . 𝛿max𝒟 over the alphabet 2sig(𝒟) with
𝛿𝑖 = {𝐴 | 𝐴(𝑖) ∈ 𝒟} for each 𝑖 ≤ max𝒟. By definition, 𝛿max𝒟 ̸= ∅. For example, the data

instance 𝒟 = {𝐴(2), 𝐵(2), 𝐴(3), 𝐴(4)}, illustrated in the picture below, is also given by the
word ∅∅{𝐴,𝐵}{𝐴}{𝐴} or ∅2{𝐴,𝐵}{𝐴}2 if we use standard formal language abbreviations.

0 1

𝐴,𝐵

2

𝐴

3

𝐴

4

Temporal conjunctive queries. To query data instances, we employ LTL-formulas that
are built from atoms and the logical constant ⊤ using conjunction ∧ and the unary temporal
operators ○ (next time) and ◇ (sometime in the future). We consider the following classes of
queries:

𝒬[○◇]: all ○◇-queries (that is, all queries in our language);

𝒬[◇]: all ◇-queries (that is, ○◇-queries not containing ○);

𝒬𝑝[○◇]: path ○◇-queries, that is, ○◇-queries of the form

𝑞 = 𝜌0 ∧ 𝑜1

(︀
𝜌1 ∧ 𝑜2(𝜌2 ∧ · · · ∧ 𝑜𝑛−1(𝜌𝑛−1 ∧ 𝑜𝑛𝜌𝑛))

)︀
, (1)

where 𝑜𝑖 ∈ {○,◇} and the 𝜌𝑖 are conjunctions of atoms (we often treat these conjunctions
as sets and the empty conjunction as ⊤);

𝒬𝑝[◇]: path ◇-queries, that is, those queries in 𝒬𝑝[○◇] that do not contain ○;

𝒬in: interval-queries, that is, queries of the form (1) with 𝜌0 = ⊤, 𝜌1 ̸= ⊤, 𝑜1 = ◇, and
𝑜𝑖 = ○, for 𝑖 > 1.

We do not consider query classes with ○-operators only, for which the containment problem is
trivial. The truth-relation 𝒟, ℓ |= 𝑞, saying that a query 𝑞 is true in 𝒟 at any moment ℓ ∈ N,
is defined as usual in temporal logic under the strict semantics; see, e.g., [28, 29] and further
references therein:

𝒟, ℓ |= ⊤, 𝒟, ℓ |= 𝐴 iff 𝐴(ℓ) ∈ 𝒟, 𝒟, ℓ |= 𝑞′ ∧ 𝑞′′ iff 𝒟, ℓ |= 𝑞′ and 𝒟, ℓ |= 𝑞′′,

𝒟, ℓ |= ○𝑞′ iff 𝒟, ℓ+ 1 |= 𝑞′, 𝒟, ℓ |= ◇𝑞′ iff 𝒟,𝑚 |= 𝑞′, for some 𝑚 > ℓ.

An answer to a query 𝑞 over a data instance 𝒟 is any ℓ such that 0 ≤ ℓ ≤ max𝒟 and 𝒟, ℓ |= 𝑞.
The temporal depth tdp(𝑞) of 𝑞 is the maximum number of nested temporal operators in 𝑞; the
size |𝑞| of 𝑞 is the number of symbols in it.

Note that there is a close link between evaluating path queries and algorithms for finding
patterns in strings [23]. A sequence is a data instance 𝒟 = 𝛿0 . . . 𝛿𝑚 with 𝛿0 = ∅ and |𝛿𝑖| = 1,
for 0 < 𝑖 ≤ 𝑚. A sequence query is a path query of the form (1) with 𝜌0 = ∅ and |𝜌𝑖| = 1, for
0 < 𝑖 ≤ 𝑛. We say that 𝜌1 . . . 𝜌𝑛 is a subsequence of 𝒟 if there are 0 < 𝑖1 < . . . < 𝑖𝑛 ≤ 𝑚
with 𝛿𝑖𝑗 = 𝜌𝑗 , for 1 ≤ 𝑗 ≤ 𝑛, and we say that 𝜌1 . . . 𝜌𝑛 is a subword of 𝒟 if there is 𝑘 ≤ 𝑚
with 𝛿𝑘+𝑗 = 𝜌𝑗 , for 1 ≤ 𝑗 ≤ 𝑛. Querying sequences using sequence queries corresponds to the
following matching problems:

– for any sequence query 𝑞 ∈ 𝒬𝑝[◇] of the form (1), we have 𝒟, 0 |= 𝑞 iff 𝜌1 . . . 𝜌𝑛 is a
subsequence of 𝒟;

– for any sequence query 𝑞 ∈ 𝒬in of the form (1), we have 𝒟, 0 |= 𝑞 iff 𝜌1 . . . 𝜌𝑛 is a
subword of 𝒟.

We write 𝑞 |= 𝑞′ if 𝒟, 0 |= 𝑞 implies 𝒟, 0 |= 𝑞′ for all 𝒟, and 𝑞 ≡ 𝑞′ if 𝑞 |= 𝑞′ and
𝑞′ |= 𝑞, in which case 𝑞 and 𝑞′ are called equivalent. For example, for any query 𝑞, we have
◇○𝑞 ≡ ○◇𝑞 ≡ ◇◇𝑞 ≡ ◇(⊤ ∧◇𝑞). It follows that every 𝒬𝑝[○◇]-query is equivalent to a
query 𝑞 of the form (1), in which 𝜌𝑛 ̸= ⊤ and whenever 𝜌𝑖 = ⊤, 0 < 𝑖 < 𝑛, then 𝑜𝑖 = 𝑜𝑖+1; in
this case, we say that 𝑞 is in normal form. Conversion to normal form can be done in L.

A query 𝑞 ∈ 𝒬[◇] is in normal form if 𝑞 = 𝜌 ∧ 𝑞1 ∧ · · · ∧ 𝑞𝑛, where 𝜌 is a conjunction
of atoms and each 𝑞𝑖, for 𝑖 = 1, . . . , 𝑛, is a 𝒬𝑝[◇]-query (in normal form) that starts with ◇.
Again, every 𝑞 ∈ 𝒬[◇] can be converted to normal form in L using the equivalence

𝜌0 ∧◇(𝜌1 ∧
𝑛⋀︁

𝑖=1

◇𝑞𝑖) ≡ 𝜌0 ∧
𝑛⋀︁

𝑖=1

◇(𝜌1 ∧◇𝑞𝑖).

For example, ◇(𝐴 ∧◇𝐵 ∧◇𝐶) ≡ ◇(𝐴 ∧◇𝐵) ∧◇(𝐴 ∧◇𝐶).
A query 𝑞 ∈ 𝒬[○◇] is in normal form if 𝑞 = 𝑟 ∧ 𝑞1 ∧ · · · ∧ 𝑞𝑛, where 𝑟 is a 𝒬𝑝[○]-query—

that is, a ◇-free 𝒬𝑝[○,◇]-query—and each 𝑞𝑖 takes the form ◇(𝑟1,𝑖 ∧◇(𝑟2,𝑖 ∧ · · · ∧◇𝑟𝑛𝑖,𝑖))
with 𝒬𝑝[○]-queries 𝑟𝑗,𝑖, for 𝑗 = 1, . . . , 𝑛𝑖. Each 𝑞 ∈ 𝒬[○◇] can be converted to normal
form in polytime using the equivalence above, ○◇𝑞 ≡ ◇○𝑞 and ○(𝑞 ∧ 𝑞′) ≡ (○𝑞 ∧ ○𝑞′).
For example, ○(○𝐴 ∧ ◇○(𝐵 ∧ ◇○𝐶 ∧ ◇𝐷)) ≡ ○2𝐴 ∧ ◇(○2𝐵 ∧ ◇○3𝐶 ∧ ◇○2𝐷)) ≡
○2𝐴 ∧◇(○2𝐵 ∧◇○3𝐶) ∧◇(○2𝐵 ∧◇○2𝐷).

Our concern in this paper is the containment problem, which has become fundamental in
database theory since the seminal work of Chandra and Merlin [24].

3. Complexity of Query Containment

The query containment problem for a class 𝒬 of queries is formulated as follows: given any
queries 𝑞, 𝑞′ ∈ 𝒬, decide whether 𝑞 |= 𝑞′.

Example 1. Consider the 𝒬𝑝[○◇]-queries 𝑞1, 𝑞2 and 𝑞′ below:

𝑞1 = ◇(𝐴 ∧𝐵 ∧ ○𝐴), 𝑞2 = ◇(𝐴 ∧𝐵 ∧ ○𝐵), 𝑞′ = ◇
(︀
𝐵 ∧◇(𝐴 ∧𝐵)

)︀
.

It is readily seen that 𝑞1 ̸|= 𝑞′ (as the data instance ∅{𝐴,𝐵}{𝐴} makes 𝑞1 true at 0 but not
𝑞′) and 𝑞2 ̸|= 𝑞′. However, for the 𝒬[○◇]-query 𝑞1 ∧ 𝑞2, we have 𝑞1 ∧ 𝑞2 |= 𝑞′. To show
this, we observe that any data instance 𝒟 = 𝛿0 . . . 𝛿𝑚 satisfying 𝑞1 ∧ 𝑞2 at 𝑛 has 𝛿𝑖 ⊇ {𝐴,𝐵},
𝛿𝑖+1 ⊇ {𝐴}, 𝛿𝑗 ⊇ {𝐴,𝐵}, 𝛿𝑗+1 ⊇ {𝐵}, for some 𝑛 < 𝑖, 𝑗 < 𝑚. In each of the three cases,
𝑖 < 𝑗, 𝑖 = 𝑗, and 𝑖 > 𝑗, we have 𝒟, 𝑛 |= 𝑞′.

In contrast to conjunctive queries in first-order logic, where query containment is NP-
complete [24], query containment is tractable for the majority of query classes defined above:

Theorem 1. The query containment problems for 𝒬𝑝[○◇], 𝒬[◇] and their subclasses are all in L.

Proof. Consider first 𝒬𝑝[○◇]. Suppose we are given two queries 𝑞, 𝑞′ ∈ 𝒬𝑝[○◇] in normal
form, 𝑞 takes the form (1) and 𝑞′ = 𝜌′0 ∧ 𝑜′

1

(︀
𝜌′1 ∧ 𝑜′

2(𝜌
′
2 ∧ · · · ∧ 𝑜′

𝑚𝜌′𝑚)
)︀
, where 𝑜′

𝑖 ∈ {○,◇}
and the 𝜌′𝑖 are conjunctions of atoms (regarded as sets).

For any 𝑘 ∈ N, we denote by [𝑘] the closed interval [0, 𝑘] ⊆ N. A function ℎ : [𝑚] → [𝑛]
is monotone if ℎ(𝑖) < ℎ(𝑗) whenever 𝑖 < 𝑗. A monotone function ℎ : [𝑚] → [𝑛] is called a
containment witness for 𝑞 and 𝑞′ if the following conditions hold:

– ℎ(0) = 0;

– 𝜌′𝑖 ⊆ 𝜌ℎ(𝑖), for all 𝑖 ∈ [𝑚];

– if 𝑖 < 𝑚 and 𝑜′
𝑖+1 = ○, then 𝑜ℎ(𝑖+1) = ○ and ℎ(𝑖+ 1) = ℎ(𝑖) + 1.

Note that checking the existence of a containment witness can be done in L in |𝑞| and |𝑞′|.
Indeed, consider first the case of 𝒬𝑝[◇]-queries. It is easily seen that a containment witness for
𝑞 and 𝑞′ exists iff there is a sequence of pairs (0, 𝑗0), . . . , (𝑚, 𝑗𝑛), where 𝑗0 = 0 and 𝑗𝑖+1 is the
minimal number 𝑗 > 𝑗𝑖 such that 𝜌′𝑖+1 ⊆ 𝜌𝑗 . For 𝒬𝑝[○◇]-queries, we need a more involved
procedure that relies, however, on the same idea. Let 𝑘′0 ≥ 0 be the minimal index such that
𝑜′
𝑘′0+1 = ◇ (it follows that 𝑜′

1 = · · · = 𝑜′
𝑘′0

= ○). If no such 𝑘′0 exists, we set 𝑘′0 = 𝑚. We
check if 𝑜1 = · · · = 𝑜𝑘′0

= ○ and 𝜌′0 ⊆ 𝜌0, . . . , 𝜌′𝑘′0 ⊆ 𝜌𝑘′0 . If this is not the case, a containment
witness does not exist. If this is the case and 𝑘′0 = 𝑚, a containment witness exists. Otherwise,
let 𝑘′1 ≥ 0 be the minimal number such that 𝑜′

𝑘′0+1+𝑘′1+1 = ◇. If no such 𝑘′1 exists, we chose 𝑘′1
such that 𝑘′0+1+ 𝑘′1 = 𝑚. We find the minimal 𝑘0 > 𝑘′0 such that 𝑜𝑘0+1 = · · · = 𝑜𝑘0+𝑘′1

= ○

and 𝜌′𝑘′0+1 ⊆ 𝜌𝑘0 , . . . , 𝜌′𝑘′0+1+𝑘′1
⊆ 𝜌𝑘0+𝑘′1

. If such 𝑘0 does not exist, a containment witness does
not exist. If such 𝑘0 exists and 𝑘′0 + 1 + 𝑘′1 = 𝑚, a containment witness exists. Otherwise, we
proceed to find 𝑘′2 ≥ 0 and 𝑘1 > 𝑘0 that satisfy the conditions analogous to the above. We
proceed until we either decide that a containment witness does not exist, or there is an iteration
𝑖 when we choose 𝑘′𝑖 ≥ 0 such that 𝑘′0 + 1+ 𝑘′1 + 1+ · · ·+ 𝑘′𝑖−1 + 1+ 𝑘′𝑖 = 𝑚. Our procedure
stops at this iteration.

The tractability of containment for path queries is an immediate consequence of the following
analogue of the Chandra-Merlin criterion for conjunctive queries in first-order logic:

Lemma 1. For any 𝑞, 𝑞′ ∈ 𝒬𝑝[○◇] in normal form, we have 𝑞 |= 𝑞′ iff there is a containment

witness for 𝑞 and 𝑞′.

Proof. Given a data instance 𝒟, by a satisfying function for 𝑞 of the form (1) in 𝒟 we mean
any monotone function 𝑓 : [𝑛] → [max𝒟] such that, for all 𝑖 ∈ [𝑛], we have 𝑓(0) = 0,
𝜌𝑖 ⊆ {𝐴 | 𝐴(𝑓(𝑖)) ∈ 𝒟}, and if 𝑜𝑖+1 = ○, then 𝑓(𝑖+ 1) = 𝑓(𝑖) + 1. It follows directly from
the definition of the truth-relation that 𝒟, 0 |= 𝑞 iff there exists a satisfying function for 𝑞 in 𝒟.

Suppose ℎ is a containment witness for 𝑞 and 𝑞′. Take any data instance 𝒟 with 𝒟, 0 |= 𝑞.
Let 𝑓 be a satisfying function for 𝑞 in 𝒟. Then it is readily checked that the composition
ℎ𝑓 : [𝑚] → [max𝒟] is a satisfying function for 𝑞′ in 𝒟, and so 𝒟, 0 |= 𝑞′. It follows that
𝑞 |= 𝑞′.

Conversely, suppose 𝑞 |= 𝑞′. We define a containment witness for 𝑞 and 𝑞′ by induction
on the temporal depth tdp(𝑞′) of 𝑞′. If tdp(𝑞′) = 0, then 𝑞′ = 𝜌′0 and 𝜌′0 ⊆ 𝜌. It follows that

ℎ(0) = 0 is the required containment witness. As an induction hypothesis (IH), we assume
next that there is a containment witness for any queries 𝑞1 and 𝑞2 such that 𝑞1 |= 𝑞2 and
tdp(𝑞2) < tdp(𝑞′). Two cases are possible.

Case 1: 𝑜′
1 = ○. Let 𝑘 > 0 be the maximal index such that 𝑜′

1 = · · · = 𝑜′
𝑘 = ○. Then 𝜌′𝑘 ̸= ⊤

(because 𝑞′ is in normal form) and 𝑜′
𝑘+1 = ◇ if 𝑚 > 𝑘. Let 𝑟 be the minimal index such that

𝜌0 ∧ 𝑜1

(︀
𝜌1 ∧ 𝑜2(𝜌2 ∧ · · · ∧ 𝑜𝑟𝜌𝑟)

)︀
|= 𝜌′0 ∧ 𝑜′

1

(︀
𝜌′1 ∧ 𝑜′

2

(︀
𝜌′2 ∧ · · · ∧ 𝑜′

𝑘𝜌
′
𝑘)
)︀
.

We claim that, for all 𝑖 ≤ 𝑘, we have 𝑜𝑖 = ○, 𝜌𝑖 ⊇ 𝜌′𝑖, and so 𝑟 = 𝑘. Indeed, if there is 𝑖 ≤ 𝑘
with 𝑜𝑖 = ◇, then we take the data instance 𝒟 = 𝜌0 . . . 𝜌𝑖−1∅𝑚𝜌𝑖 . . . 𝜌𝑛 and obtain 𝒟, 0 |= 𝑞
and 𝒟, 0 ̸|= 𝑞′, contrary to 𝑞 |= 𝑞′. And if there is 𝑖 ≤ 𝑘 with 𝜌𝑖 ̸⊇ 𝜌′𝑖, then we take the data
instance 𝒟 = 𝜌0 . . . 𝜌𝑛 and again obtain 𝒟, 0 |= 𝑞 and 𝒟, 0 ̸|= 𝑞′.

Next, we consider the ‘tails’

𝑞𝑘+1 = 𝑜𝑘+1(𝜌𝑘+1 ∧ · · · ∧ 𝑜𝑛𝜌𝑛), 𝑞′𝑘+1 = 𝑜′
𝑘+1(𝜌

′
𝑘+1 ∧ . . .𝑜′

𝑚𝜌′𝑚)

and observe that 𝑞 |= 𝑞′ implies 𝑞𝑘+1 |= 𝑞′𝑘+1. As tdp(𝑞′𝑘+1) < tdp(𝑞′), the IH gives a
containment witness ℎ′ for 𝑞𝑘+1 and 𝑞′𝑘+1. Using it, we define the required containment
witness ℎ for 𝑞 and 𝑞′ by taking ℎ(𝑖) = 𝑖, for all 𝑖 ≤ 𝑘, and ℎ(𝑘+ 𝑗) = ℎ′(𝑗) + 𝑘, for all 𝑗 with
1 ≤ 𝑗 ≤ 𝑚− 𝑘.

Case 2: 𝑜′
1 = ◇. Suppose first that there is a minimal initial subquery

𝑞̄′𝑘 = 𝜌′0 ∧ 𝑜′
1(𝜌

′
1 ∧ · · · ∧ 𝑜′

𝑘𝜌
′
𝑘)

of 𝑞′ such that 𝜌′𝑘 ̸= ⊤, 𝑜′
𝑘+1 = ◇ and 𝑘 > 0. Let 𝑞̄𝑟 = 𝜌0 ∧ 𝑜1(𝜌1 ∧ · · · ∧ 𝑜𝑟𝜌𝑟) be the

minimal initial subquery of 𝑞 with 𝑞̄𝑟 |= 𝑞̄′𝑘 . As tdp(𝑞̄′𝑘) < tdp(𝑞′), the IH gives a containment
witness ℎ0 for 𝑞̄𝑟 and 𝑞̄′𝑘. As 𝜌′𝑘 ̸= ⊤ and 𝑟 is minimal, ℎ0(𝑘) = 𝑟. By IH, our claim also
holds for 𝑞′𝑘+1 = 𝑜′

𝑘+1(𝜌
′
𝑘+1 ∧ · · · ∧ 𝑜′

𝑚𝜌′𝑚) and 𝑞𝑟+1 = 𝑜𝑟+1(𝜌𝑟+1 ∧ · · · ∧ 𝑜𝑛𝜌𝑛) and gives a
containment witness ℎ1 for 𝑞𝑟+1 and 𝑞′𝑘+1. We then obtain a containment witness for 𝑞 and 𝑞′

by concatenating ℎ0 and ℎ1.
Finally, suppose that there is no 𝜌′𝑘 ̸= ⊤ with 𝑜′

𝑘+1 = ◇ and 𝑘 > 0. Then 𝑞′ takes the form

𝜌′0 ∧◇𝑘
(︀
𝜌′𝑘 ∧ 𝑜′

𝑘+1𝜌
′
𝑘+1 · · · ∧ 𝑜′

𝑚𝜌′𝑚)
)︀
,

where 𝑘 > 0, 𝜌′𝑘 ̸= ⊤, and 𝑜′
𝑘+1 = · · · = 𝑜′

𝑚 = ○. We claim that there exists 𝑗 ≥ 𝑘 such that
𝑜𝑗+1 = · · · = 𝑜𝑗+𝑚−𝑘 = ○ and 𝜌𝑗+ℓ ⊇ 𝜌′𝑘+ℓ, for all ℓ with 0 ≤ ℓ ≤ 𝑚 − 𝑘, which clearly
implies the existence of a containment witness for 𝑞 and 𝑞′. To prove this claim, suppose there
is no such 𝑗. Consider the data instance 𝒟 = 𝜌0𝑤1𝜌1 . . . 𝑤𝑛𝜌𝑛, where 𝑤𝑖 = 𝜀 (the empty word)
if 𝑜𝑖 = ○, and 𝑤𝑖 = ∅𝑚 if 𝑜𝑖 = ◇. Then 𝒟, 0 |= 𝑞 but 𝒟, 0 ̸|= 𝑞′, contrary to 𝑞 |= 𝑞′. ⊣

Now we prove Theorem 1 for the class 𝒬[◇] of queries of the (normal) form 𝜌∧𝑞1∧ · · · ∧𝑞𝑛,
where 𝜌 is a conjunction of atoms and each 𝑞𝑖 is a 𝒬𝑝[◇]-query in normal form that starts
with ◇. The tractability of containment for 𝒬[◇]-queries follows from Lemma 1 and the next
criterion:

Lemma 2. If 𝑞 = 𝜌 ∧ 𝑞1 ∧ · · · ∧ 𝑞𝑛 ∈ 𝒬[◇] is in normal form and 𝑞′ ∈ 𝒬𝑝[◇], then 𝑞 |= 𝑞′ iff

𝜌 ∧ 𝑞𝑖 |= 𝑞′, for some 𝑖, 1 ≤ 𝑖 ≤ 𝑛.

To illustrate, consider the queries 𝑞1 and 𝑞2 from Example 1, in which we replace ○ by ◇,
and 𝑞′. It is easy to see that 𝑞1 ̸|= 𝑞′, 𝑞2 ̸|= 𝑞′, and so 𝑞1∧𝑞2 ̸|= 𝑞′. To check the latter, consider
𝒟 = ∅{𝐴,𝐵}{𝐴}{𝐵}, which satisfies 𝐴 ∧ 𝐵 from 𝑞1 and 𝑞2 at the same time instant, and
then 𝐴 from 𝑞1 and 𝐵 from 𝑞2 at different time instants.

Proof. (⇒) Suppose that 𝑞′ = 𝜌0∧◇
(︀
𝜌1∧◇(𝜌2∧· · ·∧◇𝜌𝑚)

)︀
, 𝑞𝑖 = ◇

(︀
𝜌1𝑖 ∧◇(𝜌2𝑖 ∧· · ·∧◇𝜌𝑛𝑖

𝑖)
)︀
,

for 1 ≤ 𝑖 ≤ 𝑛, and 𝑞 |= 𝑞′. Note that 𝜌 ⊇ 𝜌0 as otherwise 𝑞 ̸|= 𝑞′. For each 𝑖, 1 ≤ 𝑖 ≤ 𝑛, we
define inductively a function

𝑓𝑖 : {1, . . . ,𝑚} → {1, . . . , 𝑛𝑖} ∪ {∞}.

To begin with, we set 𝑓𝑖(1) = 𝑗 if 𝑗 is minimal such that 𝜌𝑗𝑖 ⊇ 𝜌1 and 𝑓𝑖(1) = ∞ if no 𝑗 with
𝜌𝑗𝑖 ⊇ 𝜌1 exists. Further, inductively, if 𝑓𝑖(ℓ) = ∞, then 𝑓𝑖(ℓ + 1) = ∞; if 𝑓𝑖(ℓ) < ∞, then
we set 𝑓𝑖(ℓ + 1) = 𝑗 if 𝑗 is minimal such that 𝑗 > 𝑓𝑖(ℓ) and 𝜌𝑗𝑖 ⊇ 𝜌ℓ+1; if no 𝑗 > 𝑓𝑖(ℓ) with
𝜌𝑗𝑖 ⊇ 𝜌ℓ+1 exists, we set 𝑓𝑖(ℓ+ 1) = ∞. It follows immediately from the definition that if there
is 𝑖 ≤ 𝑛 such that 𝑓𝑖(𝑚) < ∞, then 𝜌∧ 𝑞𝑖 |= 𝑞′, as required. So suppose there is no such 𝑖 ≤ 𝑛
and derive a contradiction by proving that in this case 𝑞 ̸|= 𝑞′.

Let 𝑚′ ≤ 𝑚 be minimal such that 𝑓𝑖(𝑚′) = ∞ for all 𝑖 ≤ 𝑛. Consider the data instance
𝒟1 = 𝜌𝜌11 . . . 𝜌

𝑘1
1 . . . 𝜌1𝑛 . . . 𝜌

𝑘𝑛
𝑛 , where 𝑘𝑖 = min{𝑛𝑖, 𝑓𝑖(1)−1}, 1 ≤ 𝑖 ≤ 𝑛 (we set ∞−1 = ∞).

If 𝑚′ = 1, then 𝒟1, 0 |= 𝑞 and 𝒟1, 0 ̸|= 𝑞′ since 𝒟1, 0 ̸|= ◇𝜌1, and we are done. Otherwise, for
2 ≤ ℓ ≤ 𝑚′, we take

𝛿ℓ =
⋃︁

1≤𝑖≤𝑛,𝑓𝑖(ℓ)<∞

𝜌
𝑓𝑖(ℓ)
𝑖 and 𝒟ℓ = 𝜌

𝑓1(ℓ)+1
1 . . . 𝜌

𝑘ℓ,1
1 . . . 𝜌𝑓𝑛(ℓ)+1

𝑛 . . . 𝜌
𝑘ℓ,𝑛
𝑛 ,

where 𝑘ℓ,𝑖 = min{𝑛𝑖, 𝑓𝑖(ℓ + 1) − 1}, for 1 ≤ 𝑖 ≤ 𝑛 (note that 𝜌𝑓𝑖(ℓ)+1
𝑖 . . . 𝜌

𝑘ℓ,𝑖
𝑖 is empty if

𝑓𝑖(ℓ) + 1 > 𝑛𝑖). Then we set

𝒟 = 𝒟1𝛿1𝒟2𝛿2 . . . 𝛿𝑚′−1𝒟𝑚′ .

It follows from the construction that 𝒟, 0 |= 𝑞 and 𝒟, 0 ̸|= 𝑞′, contrary to 𝑞 |= 𝑞′.
The implication (⇐) is obvious. ⊣

This completes the proof of Theorem 1. ⊣

For queries 𝑞 ∈ 𝒬[○◇], Lemma 2 does not hold as illustrated by Example 1. Moreover, in
contrast to Theorem 1, we have the following:

Theorem 2. The query containment problem for 𝒬[○◇] is coNP-complete.

Proof. To show the upper bound, suppose we are given two queries 𝑞, 𝑞′ ∈ 𝒬[○◇] in normal
form, where

𝑞 = 𝑟 ∧ 𝑞1 ∧ · · · ∧ 𝑞𝑛 with 𝑞𝑖 = ◇
(︀
𝑟𝑖,1 ∧◇(𝑟𝑖,2 ∧ · · · ∧◇𝑟𝑖,𝑛𝑖)

)︀
,

𝑟, 𝑟𝑖,𝑗 ∈ 𝒬𝑝[○], for 𝑖 = 1, . . . , 𝑛, 𝑗 = 1, . . . , 𝑛𝑖,

𝑞′ = 𝑟′ ∧ 𝑞′1 ∧ · · · ∧ 𝑞′𝑛′ with 𝑞′𝑖 = ◇
(︀
𝑟′𝑖,1 ∧◇(𝑟′𝑖,2 ∧ · · · ∧◇𝑟′𝑖,𝑛′

𝑖
)
)︀
,

𝑟′, 𝑟′𝑖,𝑗 ∈ 𝒬𝑝[○], for 𝑖 = 1, . . . , 𝑛′, 𝑗 = 1, . . . , 𝑛′
𝑖.

By definition, 𝑞 ̸|= 𝑞′ iff there exist a data instance 𝒟 and some 𝑚, 1 ≤ 𝑚 ≤ 𝑛′, such that 𝒟 |= 𝑞
and 𝒟 ̸|= 𝑟′ ∧ 𝑞′𝑚. Our aim is to show that it suffices to consider 𝒟 with max𝒟 ≤ 𝑂(|𝑞||𝑞′𝑚|).
If this is the case, then an obvious NP-algorithm deciding 𝑞 ̸|= 𝑞′ would be to guess such 𝑚 and
𝒟 with sig(𝒟) = sig(𝑞)∪sig(𝑞′), and then check in polytime whether 𝒟 |= 𝑞 and 𝒟 ̸|= 𝑟′∧𝑞′𝑚.

So, suppose we have 𝒟 |= 𝑞 and 𝒟 ̸|= 𝑟′ ∧ 𝑞′𝑚, for some 𝒟 and 𝑚. As 𝒟 |= 𝑞, for each
𝑞𝑖, there is a satisfying function 𝑓𝑖 in 𝒟, which is a monotone function 𝑓𝑖 : [1, 𝑛𝑖] → [max𝒟]
such that, for all 𝑗 ∈ [1, 𝑛𝑖], we have 𝒟𝑓𝑖(𝑗)𝒟𝑓𝑖(𝑗)+1 . . .𝒟𝑓𝑖(𝑗)+tdp(𝑟𝑖,𝑗) |= 𝑟𝑖,𝑗 . Let 𝑅𝑖,𝑗 =
[𝑓𝑖(𝑗), 𝑓𝑖(𝑗) + tdp(𝑟𝑖,𝑗)], for 𝑖 ∈ [1, 𝑛] and 𝑗 ∈ [1, 𝑛𝑖]. We may clearly assume that 𝒟𝑙 = ∅,
for all 𝑙 ∈ [max𝒟] with 𝑙 /∈

⋃︀𝑛
𝑖=1

⋃︀𝑛𝑖
𝑗=1𝑅𝑖,𝑗 ∪ [tdp(𝑟)]. Now, we cut certain segments from 𝒟

maintaining the property that the resulting data instance 𝒟′ makes 𝑞 true and 𝑟′ ∧ 𝑞′𝑚 false at
time 0.

Suppose there exist 𝑟𝑖,𝑗 and 𝑟𝑖′,𝑗′ such that 𝑓𝑖′(𝑗′) −
(︀
𝑓𝑖(𝑗) + tdp(𝑟𝑖,𝑗)

)︀
> tdp(𝑞′𝑚) and(︀

𝑓𝑖(𝑗)+tdp(𝑟𝑖,𝑗), 𝑓𝑖′(𝑗
′)
)︀
∩𝑅𝑘,𝑙 = ∅, for all 𝑘 ∈ [1, 𝑛] and 𝑙 ∈ [1, 𝑛𝑖]. Then we remove from the

segment 𝒟𝑓𝑖(𝑗)+tdp(𝑟𝑖,𝑗)+1 . . .𝒟𝑓𝑖′ (𝑗
′)−1 of 𝒟 all 𝒟𝑙 with 𝑙 > 𝑓𝑖(𝑗) + tdp(𝑟𝑖,𝑗) + tdp(𝑞′𝑚) + 1.

By definition, the removed 𝒟𝑙 are all empty. The resulting shorter instance 𝒟′ is such that
𝒟′ |= 𝑞 and 𝒟′ ̸|= 𝑟′ ∧ 𝑞′𝑚. Indeed, we have kept all the witnesses that make 𝒟′ |= 𝑞 intact.
Now, suppose 𝒟′ |= 𝑟′ ∧ 𝑞′𝑚. We take the satisfying function 𝑓 ′ for 𝑞′𝑚 in 𝒟′ and modify it to
construct 𝑓 ′′ such that 𝑓 ′′(𝑗) = 𝑓 ′(𝑗), for all 𝑗 ∈ [1, 𝑛′

𝑚] with 𝑓 ′(𝑗) ≤ 𝑓𝑖(𝑗) + tdp(𝑟𝑖,𝑗), and
𝑓 ′′(𝑗) = 𝑓 ′(𝑗) + ℓ, for all 𝑗 with 𝑓 ′(𝑗) ≤ 𝑓𝑖(𝑗) + tdp(𝑟𝑖,𝑗), where ℓ is the number of the 𝒟𝑙

that were removed from the segment 𝒟𝑓𝑖(𝑗)+tdp(𝑟𝑖,𝑗)+1 . . .𝒟𝑓𝑖′ (𝑗
′)−1. It is readily seen that 𝑓 ′′

is a satisfying function for 𝑞′𝑚 in 𝒟, which is a contradiction. Thus, 𝒟′ ̸|= 𝑟′ ∧ 𝑞′𝑚.
By performing this operation for all suitable 𝑟𝑖,𝑗 and 𝑟𝑖′,𝑗′ , we obtain a data instance with at

most
tdp(𝑟) + 1 +

∑︁
1≤𝑖≤𝑛, 1≤𝑗≤𝑛𝑖

(tdp(𝑟𝑖,𝑗) + 1) +𝑁
∑︁

1≤𝑗≤𝑚′

(tdp(𝑟𝑚′,𝑗) + 1)

time instants, where 𝑁 is the number of 𝑟𝑖,𝑗 in 𝑞 plus 1.
The matching lower bound is shown by reduction of the 3SAT problem to the complement

of the containment problem for 𝒬[○◇]. Suppose we are given a 3CNF 𝜙 = 𝑐1 ∧ · · · ∧ 𝑐𝑛 with
clauses 𝑐𝑖 and variables 𝑥1, . . . , 𝑥𝑚 such that no 𝑐𝑖 contains both 𝑥𝑗 and ¬𝑥𝑗 , for any 𝑗. Our
aim is to construct 𝒬[○]-queries 𝑟𝑖, for all 𝑖 = 0, . . . , 𝑛, and a 𝒬[○◇]-query 𝑟′ such that

𝜙 is satisfiable iff
⋀︁

0≤𝑖≤𝑛

◇𝑟𝑖 ̸|= ◇𝑟′. (2)

For each 𝑗 = 1, . . . ,𝑚, we take two atoms 𝑋𝑗 and 𝑋̄𝑗 to represent 𝑥𝑗 and ¬𝑥𝑗 , respectively.
Given a literal ℓ𝑗 ∈ {𝑥𝑗 ,¬𝑥𝑗}, set 𝐿ℓ𝑗 = 𝑋𝑗 if ℓ𝑗 = 𝑥𝑗 and 𝐿ℓ𝑗 = 𝑋̄𝑗 if ℓ𝑗 = ¬𝑥𝑗 . We also use
two additional atoms 𝐵 and 𝐸. We require the following conjunctions of atoms, written as sets:

𝛼 = {𝑋1, 𝑋̄1, . . . , 𝑋𝑚, 𝑋̄𝑚},

𝛼𝐵 = 𝛼 ∪ {𝐵},
𝜆ℓ = 𝛼 ∖ {𝐿ℓ}, for a literal ℓ over 𝑥1, . . . , 𝑥𝑚,
𝛽𝑗 = 𝛼 ∖ {𝑋𝑗 , 𝑋̄𝑗}, for 𝑗 = 1, . . . ,𝑚.

Let 𝜎 = {𝑋1, 𝑋̄1, . . . 𝑋𝑚, 𝑋̄𝑚, 𝐵,𝐸}. We define the 𝒬[○]-queries 𝑟𝑖 as words of the form
𝜌0𝜌1𝜌2 . . . 𝜌𝑙 over the alphabet 2𝜎 that represent 𝜌0 ∧ ○

(︀
𝜌1 ∧ ○(𝜌2 ∧ · · · ∧ ○𝜌𝑙)

)︀
. Namely, we

set

𝑟0 = {𝐵}∅2𝑚−1𝛼𝛽1 . . . 𝛽𝑚∅2𝑚{𝐸}, and 𝑟𝑖 = 𝛼𝐵𝑟𝑖,1𝑟𝑖,2𝑟𝑖,3{𝐸}, for 𝑖 = 1, . . . , 𝑛,

where the substrings 𝑟𝑖,𝑘, for 𝑘 = 1, 2, 3, of 𝑟𝑖 are defined as follows: if 𝑐𝑖 = ℓ𝑗1 ∨ ℓ𝑗2 ∨ ℓ𝑗3 ,
then

𝑟𝑖,𝑘 = 𝛽1 . . . 𝛽𝑗𝑘−1𝜆ℓ𝑗𝑘
𝛽𝑗𝑘+1 . . . 𝛽𝑚.

Thus, the length of each word 𝑟𝑖, for 𝑖 = 1, . . . ,𝑚, is 3𝑚+ 2, and so the temporal depth of the
corresponding queries 𝑟𝑖 is 3𝑚+ 1. The length of 𝑟0 is 5𝑚+ 2. Finally, we set

𝑟′ = 𝐵 ∧ ○2𝑚◇(𝛼 ∧ ○2𝑚◇𝐸).

Example 2. Consider the 3CNF 𝜙 = 𝑐1 ∧ 𝑐2 with 𝑐1 = 𝑥1 ∨ ¬𝑥2 ∨ 𝑥4, 𝑐2 = 𝑥1 ∨ ¬𝑥3 ∨ ¬𝑥4,
𝑛 = 2 and 𝑚 = 4. The words 𝑟0, 𝑟1, 𝑟2 for 𝜙 are illustrated in the picture below, where the
numbers indicate the positions of the respective characters, starting from 1, and ∅ is omitted
(remember that, in (2), we use the queries ◇𝑟𝑖).
𝐵

1 2 3 4 5 6 7 8

𝛼

9

𝛽1

10

𝛽2

11

𝛽3

12

𝛽4

13 14 15 16 17 18 19 20 21

𝐸

22
𝑟0

𝛼𝐵

1

𝜆𝑥1

2

𝛽2

3

𝛽3

4

𝛽4

5

𝛽1

6

𝜆¬𝑥2

7

𝛽3

8

𝛽4

9

𝛽1

10

𝛽2

11

𝛽3

12

𝜆𝑥4

13

𝐸

14
𝑟1

𝛼𝐵

1

𝜆𝑥1

2

𝛽2

3

𝛽3

4

𝛽4

5

𝛽1

6

𝛽2

7

𝜆¬𝑥3

8

𝛽4

9

𝛽1

10

𝛽2

11

𝛽3

12

𝜆¬𝑥4

13

𝐸

14
𝑟2

The query ◇𝑟′ can be depicted as follows, with the dots . . .mimicking the ◇-operators:

.
𝛼

. . .
𝐸𝐵

We now prove equivalence (2) starting with implication (⇒). Suppose a is an assignment
satisfying 𝜙. For each clause 𝑐𝑖 = ℓ𝑗1 ∨ ℓ𝑗2 ∨ ℓ𝑗3 in 𝜙, fix some 𝑘𝑖 ∈ {1, 2, 3} such that the
literal ℓ𝑗𝑘𝑖 is true under a. Denote by 𝑟𝑖(𝑡) the 𝑡th character in the word 𝑟𝑖 (see Example 2).
Define a data instance 𝒟 by taking, for all 𝐴 ∈ 𝜎 and 𝑡 ≤ 5𝑚+ 2,

𝐴(𝑡) ∈ 𝒟 iff 𝐴 ∈ 𝑟0(𝑡) or 𝐴 ∈ 𝑟𝑖(𝑡− (3− 𝑘𝑖)𝑚), for some 𝑖 ∈ [1, 𝑛].

In other words, 𝒟 can be constructed by first adding to each 𝑟𝑖 with 𝑖 > 0, a prefix of (3−𝑘𝑖)𝑚-
many ∅-characters to make 𝛽1 in 𝑟0 aligned with the first character of the substring 𝑟𝑖,𝑘𝑖 in 𝑟𝑖
and then taking the union of the characters in the aligned positions of the resulting words and

𝑟0.

Example 3. Consider again the 3CNF 𝜙 from Example 2 and the satisfying assignment a that
make 𝑥3 false and all the other variables true. Let 𝑘1 = 3 and 𝑘2 = 2. In this case, the data
instance 𝒟 looks as follows:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
𝒟

𝑟0 𝐵 𝛼 𝛽1 𝛽2 𝛽3 𝛽4 𝐸
𝑟1 𝛼𝐵 𝜆𝑥1 𝛽2 𝛽3 𝛽4 𝛽1 𝜆¬𝑥2 𝛽3 𝛽4 𝛽1 𝛽2 𝛽3 𝜆𝑥4 𝐸
𝑟2 𝛼𝐵 𝜆𝑥1 𝛽2 𝛽3 𝛽4 𝛽1 𝜆¬𝑥2 𝛽3 𝛽4 𝛽1 𝛽2 𝛽3 𝜆𝑥4 𝐸

Returning to the proof of (⇒), we see that 𝒟, 1 |= 𝑟0 and 𝒟, 1 + (3 − 𝑘𝑖)𝑚 |= 𝑟𝑖 follow
immediately from the definitions, which gives 𝒟 |=

⋀︀
0≤𝑖≤𝑛◇𝑟𝑖. It also follows from the

definitions that 𝒟 |= ◇𝑟′ iff 𝒟, 𝑘 |= 𝛼, for some 𝑘 ∈ [2𝑚+ 2, 3𝑚+ 1]. Thus, 𝒟 |= ◇𝑟′ would
imply that 𝒟, 2𝑚+ 1+ 𝑙 |= 𝛼, for some 𝑙 ∈ [1,𝑚], and so there must exist distinct 𝑖, 𝑗 ∈ [1, 𝑛]
such that 𝑟𝑖,𝑘𝑖 and 𝑟𝑗,𝑘𝑗 have 𝜆𝑥𝑙

and 𝜆¬𝑥𝑙
at position 𝑙, respectively. But this is impossible as,

by the choice of 𝑘𝑖 and 𝑘𝑗 , the assignment a should make both 𝑥𝑙 and ¬𝑥𝑙 true.
(⇐) Assuming

⋀︀
0≤𝑖≤𝑛◇𝑟𝑖 ̸|= ◇𝑟′, we take a data instance 𝒟 with 𝒟 |=

⋀︀
0≤𝑖≤𝑛◇𝑟𝑖 and

𝒟 ̸|= ◇𝑟′. Let 𝑡𝑖 be the minimal number such that 𝒟, 𝑡𝑖 |= 𝑟𝑖. Observe that 𝑡𝑖 ≥ 𝑡0 for all
𝑖 ∈ [1, 𝑛], as otherwise we would have 𝒟 |= ◇𝑟′. For the same reason and because 𝐵 ∈ 𝛼𝐵 , we
must have 𝑡𝑖 ≤ 𝑡0 + 2𝑚 (see the picture in Example 2 for an illustration). Moreover, there are
only three possibilities for 𝑡𝑖, namely, 𝑡𝑖 ∈ {𝑡0, 𝑡0 +𝑚, 𝑡0 + 2𝑚}. Indeed, suppose otherwise.
Then 𝑚 > 1 and 𝑡𝑖 ∈ [𝑡0, 𝑡0 +2𝑚] ∖ {𝑡0, 𝑡0 +𝑚, 𝑡0 +2𝑚}, and so 𝒟, 𝑡0 +2𝑚+1 |= 𝛼, which
implies 𝒟 |= ◇𝑟′. It follows that, for each 𝑖 ∈ [1, 𝑛], we have either 𝒟, 𝑡0 + 2𝑚+ 1 |= 𝑟𝑖,1 or
𝒟, 𝑡0+2𝑚+1 |= 𝑟𝑖,2 or 𝒟, 𝑡0+2𝑚+1 |= 𝑟𝑖,3. Let 𝑘𝑖 = 𝑗 be such that 𝒟, 𝑡0+2𝑚+1 |= 𝑟𝑖,𝑗
(if there are several such 𝑗, we can take the minimal one).

Consider the assignment a that makes 𝑥𝑙 false if 𝜙 has a clause 𝑐𝑖 = ℓ𝑗1 ∨ ℓ𝑗2 ∨ ℓ𝑗3 with
ℓ𝑗𝑘𝑖 = ¬𝑥𝑙, and true otherwise. We show that, for each 𝑐𝑖 = ℓ𝑗1 ∨ ℓ𝑗2 ∨ ℓ𝑗3 in 𝜙, the literal ℓ𝑗𝑘𝑖
is true under a. This is clearly the case if ℓ𝑗𝑘𝑖 = ¬𝑥𝑙. So, suppose ℓ𝑗𝑘𝑖 = 𝑥𝑙. By definition, a
makes 𝑥𝑙 true iff there is no 𝑐𝑖′ = ℓ𝑗′1 ∨ ℓ𝑗′2 ∨ ℓ𝑗′3 with ℓ𝑗′𝑘𝑖′

= ¬𝑥𝑙. Suppose, on the contrary,
that such a 𝑐𝑖′ exists. By the choice of 𝑘𝑖 and 𝑘𝑖′ , it follows that 𝒟, 𝑡0 + 2𝑚 + 1 |= 𝑟𝑖,𝑘𝑖
and 𝒟, 𝑡0 + 2𝑚 + 1 |= 𝑟𝑖′,𝑘𝑖′ . But then 𝒟, 𝑡0 + 2𝑚 + 𝑙 |= 𝛼, and so 𝒟 |= ◇𝑟′, which is a
contradiction. ⊣

4. Open Problems

We have shown that the containment problem for the classes 𝒬𝑝[○◇] and 𝒬[◇] of LTL-queries
lies in the complexity class L. It would be of interest to understand if this complexity bound is
tight or the problem is easier, e.g., in NC1. As observed earlier, unlike first-order conjunctive
queries but similarly to XPath-queries and queries with transitive roles, 𝒬[○◇]-query contain-
ment is not polytime reducible to query evaluation (unless P = NP). However, it follows from
the proofs above that, for 𝒬𝑝[○◇] and 𝒬[◇], containment is polytime reducible to evaluation,
although the reduction is less trivial than in the first-order case. It is also worth noting that a
polysize witness for non-containment exists for all of our queries, similarly to some classes of
XPath/transitive queries [25].

In this paper, we have not considered conjunctive queries with the until-operator U, for
which containment is only known to be in PSpace. Natural restricted fragments of conjunctive
path-queries with U that only allow conjunctions of atoms on the left-hand side of U have been
identified in [20, 19]; however, the complexity of containment for those fragments have not
been studied yet. For path-U-queries satisfying the restriction above, the existence of a polysize
witness for non-containment was shown in [19, Theorem 9]. This fact implies a coNP upper
bound for containment, but it is not known whether this bound is tight.

References

[1] H. Ono, A. Nakamura, On the size of refutation Kripke models for some linear modal and
tense logics, Studia Logica (1980) 325–333.

[2] A. P. Sistla, E. M. Clarke, The complexity of propositional linear temporal logics, J. ACM
32 (1985) 733–749. URL: https://doi.org/10.1145/3828.3837. doi:10.1145/3828.3837.

[3] C.-C. Chen, I.-P. Lin, The computational complexity of the satisfiability of modal Horn
clauses for modal propositional logics, Theor. Comp. Sci. 129 (1994) 95–121.

[4] S. Demri, P. Schnoebelen, The complexity of propositional linear temporal log-
ics in simple cases, Information and Computation 174 (2002) 84–103. URL: https:
//www.sciencedirect.com/science/article/pii/S0890540101930949. doi:https://doi.org/
10.1006/inco.2001.3094.

[5] M. Bauland, T. Schneider, H. Schnoor, I. Schnoor, H. Vollmer, The complexity of generalized
satisfiability for linear temporal logic, in: H. Seidl (Ed.), Foundations of Software Science
and Computational Structures, Springer Berlin Heidelberg, Berlin, Heidelberg, 2007, pp.
48–62.

[6] C. Dixon, M. Fisher, B. Konev, Tractable temporal reasoning, in: Proceedings of the
20th International Joint Conference on Artifical Intelligence, IJCAI’07, Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 2007, p. 318–323.

[7] A. Artale, R. Kontchakov, V. Ryzhikov, M. Zakharyaschev, The complexity of clausal
fragments of LTL, in: K. L. McMillan, A. Middeldorp, A. Voronkov (Eds.), Logic for
Programming, Artificial Intelligence, and Reasoning - 19th International Conference,
LPAR-19, Stellenbosch, South Africa, December 14-19, 2013. Proceedings, volume 8312 of
Lecture Notes in Computer Science, Springer, 2013, pp. 35–52. URL: https://doi.org/10.1007/
978-3-642-45221-5_3. doi:10.1007/978-3-642-45221-5_3.

[8] A. Artale, R. Kontchakov, V. Ryzhikov, M. Zakharyaschev, A cookbook for temporal
conceptual data modelling with description logics, ACM Trans. Comput. Log. 15 (2014)
25:1–25:50. URL: https://doi.org/10.1145/2629565. doi:10.1145/2629565.

[9] V. Fionda, G. Greco, LTL on finite and process traces: Complexity results and a practical
reasoner, J. Artif. Intell. Res. 63 (2018) 557–623. URL: https://doi.org/10.1613/jair.1.11256.
doi:10.1613/JAIR.1.11256.

[10] A. Artale, R. Kontchakov, A. Kovtunova, V. Ryzhikov, F. Wolter, M. Zakharyaschev, First-
order rewritability of ontology-mediated queries in linear temporal logic, Artif. Intell. 299
(2021) 103536. URL: https://doi.org/10.1016/j.artint.2021.103536. doi:10.1016/j.artint.
2021.103536.

https://doi.org/10.1145/3828.3837
http://dx.doi.org/10.1145/3828.3837
https://www.sciencedirect.com/science/article/pii/S0890540101930949
https://www.sciencedirect.com/science/article/pii/S0890540101930949
http://dx.doi.org/https://doi.org/10.1006/inco.2001.3094
http://dx.doi.org/https://doi.org/10.1006/inco.2001.3094
https://doi.org/10.1007/978-3-642-45221-5_3
https://doi.org/10.1007/978-3-642-45221-5_3
http://dx.doi.org/10.1007/978-3-642-45221-5_3
https://doi.org/10.1145/2629565
http://dx.doi.org/10.1145/2629565
https://doi.org/10.1613/jair.1.11256
http://dx.doi.org/10.1613/JAIR.1.11256
https://doi.org/10.1016/j.artint.2021.103536
http://dx.doi.org/10.1016/j.artint.2021.103536
http://dx.doi.org/10.1016/j.artint.2021.103536

[11] J. Chomicki, D. Toman, M. H. Böhlen, Querying ATSQL databases with temporal logic,
ACM Trans. Database Syst. 26 (2001) 145–178. URL: https://doi.org/10.1145/383891.383892.
doi:10.1145/383891.383892.

[12] J. Chomicki, D. Toman, Temporal logic in database query languages, in: L. Liu, M. T.
Özsu (Eds.), Encyclopedia of Database Systems, Second Edition, Springer, 2018. URL: https:
//doi.org/10.1007/978-1-4614-8265-9_402. doi:10.1007/978-1-4614-8265-9_402.

[13] A. Artale, R. Kontchakov, A. Kovtunova, V. Ryzhikov, F. Wolter, M. Zakharyaschev,
Ontology-mediated query answering over temporal data: A survey (invited talk), in:
S. Schewe, T. Schneider, J. Wijsen (Eds.), 24th International Symposium on Temporal
Representation and Reasoning, TIME 2017, October 16-18, 2017, Mons, Belgium, volume 90
of LIPIcs, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2017, pp. 1:1–1:37. URL:
https://doi.org/10.4230/LIPIcs.TIME.2017.1. doi:10.4230/LIPIcs.TIME.2017.1.

[14] S. Brandt, E. G. Kalayci, V. Ryzhikov, G. Xiao, M. Zakharyaschev, Querying log data with
metric temporal logic, J. Artif. Intell. Res. 62 (2018) 829–877. URL: https://doi.org/10.1613/
jair.1.11229. doi:10.1613/jair.1.11229.

[15] D. Wang, P. Hu, P. A. Walega, B. C. Grau, Meteor: Practical reasoning in datalog with
metric temporal operators, in: Thirty-Sixth AAAI Conference on Artificial Intelligence,
AAAI 2022, Thirty-Fourth Conference on Innovative Applications of Artificial Intelligence,
IAAI 2022, The Twelveth Symposium on Educational Advances in Artificial Intelligence,
EAAI 2022 Virtual Event, February 22 - March 1, 2022, AAAI Press, 2022, pp. 5906–5913.
URL: https://doi.org/10.1609/aaai.v36i5.20535. doi:10.1609/AAAI.V36I5.20535.

[16] A. Kurucz, V. Ryzhikov, Y. Savateev, M. Zakharyaschev, Deciding fo-rewritability of regular
languages and ontology-mediated queries in linear temporal logic, J. Artif. Intell. Res. 76
(2023) 645–703. URL: https://doi.org/10.1613/jair.1.14061. doi:10.1613/JAIR.1.14061.

[17] D. Neider, R. Roy, What Is Formal Verification Without Specifications? A Survey on Mining
LTL Specifications, Springer Nature Switzerland, Cham, 2025, pp. 109–125. URL: https:
//doi.org/10.1007/978-3-031-75778-5_6. doi:10.1007/978-3-031-75778-5_6.

[18] R. Raha, R. Roy, N. Fijalkow, D. Neider, Scalable anytime algorithms for learning fragments
of linear temporal logic, in: D. Fisman, G. Rosu (Eds.), Tools and Algorithms for the
Construction and Analysis of Systems, Springer International Publishing, Cham, 2022, pp.
263–280.

[19] M. Fortin, B. Konev, V. Ryzhikov, Y. Savateev, F. Wolter, M. Zakharyaschev, Unique
characterisability and learnability of temporal instance queries, in: G. Kern-Isberner,
G. Lakemeyer, T. Meyer (Eds.), Proceedings of the 19th International Conference on
Principles of Knowledge Representation and Reasoning, KR 2022, Haifa, Israel. July 31 -
August 5, 2022, 2022. URL: https://proceedings.kr.org/2022/17/.

[20] M. Fortin, B. Konev, V. Ryzhikov, Y. Savateev, F. Wolter, M. Zakharyaschev, Reverse
engineering of temporal queries mediated by LTL ontologies, in: Proceedings of the
Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI 2023, 19th-
25th August 2023, Macao, SAR, China, ijcai.org, 2023, pp. 3230–3238. URL: https://doi.org/
10.24963/ijcai.2023/360. doi:10.24963/IJCAI.2023/360.

[21] J. C. Jung, V. Ryzhikov, F. Wolter, M. Zakharyaschev, Extremal separation problems
for temporal instance queries, in: Proceedings of the Thirty-Third International Joint
Conference on Artificial Intelligence, IJCAI 2024, Jeju, South Korea, August 3-9, 2024,

https://doi.org/10.1145/383891.383892
http://dx.doi.org/10.1145/383891.383892
https://doi.org/10.1007/978-1-4614-8265-9_402
https://doi.org/10.1007/978-1-4614-8265-9_402
http://dx.doi.org/10.1007/978-1-4614-8265-9_402
https://doi.org/10.4230/LIPIcs.TIME.2017.1
http://dx.doi.org/10.4230/LIPIcs.TIME.2017.1
https://doi.org/10.1613/jair.1.11229
https://doi.org/10.1613/jair.1.11229
http://dx.doi.org/10.1613/jair.1.11229
https://doi.org/10.1609/aaai.v36i5.20535
http://dx.doi.org/10.1609/AAAI.V36I5.20535
https://doi.org/10.1613/jair.1.14061
http://dx.doi.org/10.1613/JAIR.1.14061
https://doi.org/10.1007/978-3-031-75778-5_6
https://doi.org/10.1007/978-3-031-75778-5_6
http://dx.doi.org/10.1007/978-3-031-75778-5_6
https://proceedings.kr.org/2022/17/
https://doi.org/10.24963/ijcai.2023/360
https://doi.org/10.24963/ijcai.2023/360
http://dx.doi.org/10.24963/IJCAI.2023/360

ijcai.org, 2024, pp. 3448–3456. URL: https://www.ijcai.org/proceedings/2024/382.
[22] C. Fraser, Consistent subsequences and supersequences, Theor. Comput. Sci.

165 (1996) 233–246. URL: https://doi.org/10.1016/0304-3975(95)00138-7. doi:10.1016/
0304-3975(95)00138-7.

[23] M. Crochemore, C. Hancart, T. Lecroq, Algorithms on strings, Cambridge University Press,
2007.

[24] A. Chandra, P. Merlin, Optimal implementation of conjunctive queries in relational
data bases, in: Conference Record of the Ninth Annual ACM Symposium on Theory of
Computing, 2-4 May 1977, Boulder, Colorado, USA, ACM, 1977, pp. 77–90.

[25] G. Miklau, D. Suciu, Containment and equivalence for an xpath fragment, in: L. Popa,
S. Abiteboul, P. G. Kolaitis (Eds.), Proceedings of the Twenty-first ACM SIGACT-SIGMOD-
SIGART Symposium on Principles of Database Systems, June 3-5, Madison, Wisconsin,
USA, ACM, 2002, pp. 65–76. URL: https://doi.org/10.1145/543613.543623. doi:10.1145/
543613.543623.

[26] H. Björklund, W. Martens, T. Schwentick, Conjunctive query containment over trees,
J. Comput. Syst. Sci. 77 (2011) 450–472. URL: https://doi.org/10.1016/j.jcss.2010.04.005.
doi:10.1016/J.JCSS.2010.04.005.

[27] C. Haase, C. Lutz, Complexity of subsumption in the el family of description logics: Acyclic
and cyclic TBoxes, in: M. Ghallab, C. D. Spyropoulos, N. Fakotakis, N. M. Avouris (Eds.),
ECAI 2008 - 18th European Conference on Artificial Intelligence, Patras, Greece, July 21-25,
2008, Proceedings, volume 178 of Frontiers in Artificial Intelligence and Applications, IOS
Press, 2008, pp. 25–29. URL: https://doi.org/10.3233/978-1-58603-891-5-25. doi:10.3233/
978-1-58603-891-5-25.

[28] D. Gabbay, A. Kurucz, F. Wolter, M. Zakharyaschev, Many-Dimensional Modal Logics:
Theory and Applications, volume 148 of Studies in Logic, Elsevier, 2003.

[29] S. Demri, V. Goranko, M. Lange, Temporal Logics in Computer Science, Cambridge Tracts
in Theoretical Computer Science, Cambridge University Press, 2016.

https://www.ijcai.org/proceedings/2024/382
https://doi.org/10.1016/0304-3975(95)00138-7
http://dx.doi.org/10.1016/0304-3975(95)00138-7
http://dx.doi.org/10.1016/0304-3975(95)00138-7
https://doi.org/10.1145/543613.543623
http://dx.doi.org/10.1145/543613.543623
http://dx.doi.org/10.1145/543613.543623
https://doi.org/10.1016/j.jcss.2010.04.005
http://dx.doi.org/10.1016/J.JCSS.2010.04.005
https://doi.org/10.3233/978-1-58603-891-5-25
http://dx.doi.org/10.3233/978-1-58603-891-5-25
http://dx.doi.org/10.3233/978-1-58603-891-5-25

	1 Introduction
	2 Temporal Data and Queries
	3 Complexity of Query Containment
	4 Open Problems

