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Abstract
This paper addresses one of the fundamental open questions in the realm of existential rules: the

conjecture on the finite controllability of bounded derivation depth rule sets (bdd⇒fc). We take a step

toward a positive resolution of this conjecture by demonstrating that universal models generated by bdd

rule sets cannot contain arbitrarily large tournaments (arbitrarily directed cliques) without entailing a

loop query, ∃𝑥 𝐸(𝑥, 𝑥). This simple yet elegant result narrows the space of potential counterexamples

to the (bdd⇒fc) conjecture.
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The last decade has witnessed a fruitful interplay between the database and the knowledge

representation communities, aiming to facilitate the integration and querying of legacy databases.

The general idea is to allow a user to formulate queries using a logical formalism, whose

predicates’ meaning is constrained through first-order formulas. This leads to a core reasoning

problem, called ontology based query answering (OBQA), that takes as input a database ℐ , a rule

set ℛ and a Boolean conjunctive query 𝑞, and asks whether ℐ,ℛ |= 𝑞, where |= denotes the

entailment relation of first-order logic. In other words, is that true that any model (finite or

infinite) of ℐ and ℛ is a model of 𝑞? Rules are often expressed as existential rules1
which are

formulas of the shape ∀𝑥̄, 𝑦 𝐵(𝑥̄, 𝑦) → ∃𝑧 𝐻(𝑦, 𝑧), where 𝐵 and 𝐻 are conjunctions of atoms

respectively called the body and the head of the rule. It is well known that when no further

constraints are put on rules, OBQA is an undecidable problem.

Decidability of OBQA A significant research effort has thus been devoted to design condi-

tions on ℛ that ensure the decidability and sometimes the tractability of Boolean conjunctive

query answering under ℛ. An important tool to understand these conditions is the chase [5].

In a nutshell, the chase is an algorithm that adds fresh terms and new atoms to ensure that each

mapping of a rule body can be extended into a mapping of a rule head. The result of this possibly
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infinite process is a specific model of ℐ and ℛ, which has a universal model property [6]: it

homomorphically maps to any model of ℐ and ℛ. When the chase is finite (which is for instance

the case when the rule set fulfills some kind of acyclicity [7, 8, 9, 10, 11]), this provides a decision

procedure for query answering. It is also the case when the chase is not finite, but is a structure

of bounded treewidth — this is typically the case for guarded rules [12].

Finally, and of great interest for our work, is the case of UCQ-rewritability. A rule set ℛ is

said to be UCQ-rewritable if conjunctive queries (CQs) can always be rewritten. Specifically, for

every CQ 𝑞, there exists a union of conjunctive queries (UCQ) 𝑄ℛ such that, for any database ℐ :

ℐ,ℛ |= 𝑞 ⇐⇒ ℐ |= 𝑄ℛ.

Given that the chase can produce an infinite structure, the UCQ-rewritability of a rule set

ensures decidable OBQA, as the rewriting can be computed and subsequently used to query the

database. Unsurprisingly, UCQ-rewritability has been the subject of extensive research, leading

to the introduction of numerous subclasses over the past few decades, including: linear theories,
which permit at most a single atom in rule bodies [13]; guarded bdd theories, which generalize

linear theories [14, 15]; sticky theories, where strong restrictions are imposed on joins [16].

UCQ-rewritability is also studied independently under a number of different names — high-

lighting the fundamental nature of the property — with notable cases of finite unification sets

class (fus) and bounded derivation depth property (bdd). The fus class is closely tied to the

concept of the backward chaining procedure, which is essentially a process of “chasing in

reverse.” In this approach, to answer the entailment question, one starts with a query and

attempts to derive a substructure of the database by applying rules in reverse. The bdd class

has a much older origin, dating back to the 1980s. It stems from the classical notion of the

boundedness of a Datalog program [17].

Definition 1. A rule set has bounded derivation depth (bdd) if for every CQ 𝑞, there is some
𝑘 ≥ 0 such that for all instances ℐ , we have ⟨ ℐ,ℛ⟩ |= 𝑞 if and only if 𝑞 is already entailed at
step 𝑘 of the chase from ℐ and ℛ. We use bdd to denote the class of rule sets with bdd.

OBQA in the finite Databases, however, are finite structures, and under the understanding

that ℐ is a partial description of the real world, and that ℛ are constraints that should hold

on the finite real world, the classical notion of entailment provided by first-order logic does

not correspond to the desired notion of entailment. Indeed, one should be more interested

in knowing whether “q holds in any finite database that contains ℐ and is a model of ℛ”.

This semantics is clearly related with the previous one, as a consequence of ℐ and ℛ in the

unrestricted semantics is also one in the finite one. The converse is however not true, as the

following prototypical example witnesses.

Example 2. Let us consider ℐ = {E(𝑎, 𝑏)}, and ℛ containing the two rules ∀𝑥∀𝑦 E(𝑥, 𝑦) →
∃𝑧 E(𝑦, 𝑧) and ∀𝑥∀𝑦∀𝑧 E(𝑥, 𝑦) ∧ E(𝑦, 𝑧) → E(𝑥, 𝑧). The query ∃𝑥 E(𝑥, 𝑥) is not a consequence
of ℐ,ℛ under the unrestricted semantics, as witnessed by the chase. In any finite model however,
there must be a cycle, and hence a loop because of the transitivity enforced by the second rule.



Finite Controllability Finite reasoning provides us with a semi-decision procedure for non-

entailment (enumerating finite interpretations, and checking whether there exists one that is

not a model of 𝑄), but entailment is not semi-decidable anymore, as a finite universal model may

not exist. An interesting question, already raised by Rosati [18], is, given a rule set ℛ, whether

for any database ℐ and any query 𝑄 the unrestricted and the finite semantics coincide. If so,

the rule set ℛ is said to be finitely controllable (fc). Note that whenever a rule set is fc, query

answering becomes decidable. Indeed, the classical mathematical tools for semi-deciding first-

order entailment are still available, while non-entailment can be witnessed by finite structures.

Rosati showed that inclusion dependencies, a very restricted form of existential rules, enjoy

finite controllability [18]. This has been generalized in two ways, for guarded rules [19], as well

as for sticky rules [20]. Note that both classes generalize inclusion dependencies in various

ways, guarded rules enjoying the bounded treewidth property, while sticky rules enjoy the

bounded derivation depth property.

There is a well-known conjecture by Gogacz and Marcinkowski [21] stating that rule sets with

the bounded derivation depth (bdd) property are finitely controllable (bdd ⇒fc). Moreover,

they demonstrated that the conjecture holds in a specific restricted setting where bdd rule sets

are defined over a binary signature and have heads containing only a single atom [21]. However,

this result applies to a highly limited case, and little progress has been made towards resolving

the conjecture in its general form. The broader question of whether finite controllability extends

to all bdd rule sets remains an important open problem.

Contributions Our main contribution is to show that bdd rule sets enjoy certain model-

theoretic property. We write TournamentsE to denote the query: for all integers 𝑘, there is a
set {𝑥1, . . . , 𝑥𝑘 } of elements in the given instance such that E(𝑥𝑖, 𝑥𝑗) or E(𝑥𝑗 , 𝑥𝑖) holds in the
instance for all 𝑖 ̸= 𝑗, and write LoopE to denote the query ∃𝑥 E(𝑥, 𝑥). Then, the following is

our main result:

Theorem 3. For every bdd rule set ℛ and every instance ℐ :

(ℐ,ℛ) |= TournamentsE ⇒ (ℐ,ℛ) |= LoopE.

In addition to providing insights into the structural properties of universal models of bdd

rule sets, this result serves as an important step towards proving the (bdd ⇒fc) conjecture.

Specifically, it narrows the space of potential counterexamples to the conjecture by eliminating

the most natural ones. We briefly explain why this is the case. First note that any model that

entails TournamentsE and not LoopE is infinite, as the terms 𝑥1, . . . , 𝑥𝑘 in TournamentsE

must be distinct for LoopE not to be entailed. Thus, TournamentsE does imply LoopE in the

finite setting, and any bdd rule set for which this implication does not hold (in the unrestricted

setting) would disprove (bdd⇒fc).

Note however that Example 2 does not constitute such a counterexample, as its rule set

is simply not bdd, since the transitivity rule has to be applied at least as many times as the

distance between 𝑎 and 𝑏 to entail E(𝑎, 𝑏), which cannot be bounded independently of the size

of the database. Expanding on that example, one could try to mimic the behavior using bdd

rules by replacing the transitivity rule with ∀𝑥∀𝑥′∀𝑦∀𝑦′ E(𝑥, 𝑥′) ∧ E(𝑦, 𝑦′) → E(𝑥, 𝑦′), which

entails it. With this change, the rule set is finally bdd, and the chase entails TournamentsE.



However, this new rule triggers the entailment of ∃𝑥 E(𝑥, 𝑥) as soon as ∃𝑥∃𝑦 E(𝑥, 𝑦) is entailed,

as expected due to Theorem 3.

While Theorem 3 does not entail the (bdd⇒fc) conjecture, as a different type of counterex-

ample could in principle exist, we are confident that the insights and carefully curated toolkit

developed to tackle this case represent an important milestone in the effort to settle the (bdd

⇒fc) conjecture in the general setting.

Organization of the proof The proof of Theorem 3 goes in two main steps. First, we

introduce a series of rule set normalizations to constrain universal models of FUS rule sets in a

more manageable structure. While some of these are well-known, the properties we require are

tailored to the specific case at hand and need a separate formal proof. Then, we introduce the

crucial notion of valley queries that are used to define the E predicate, and we show through a

nice application of Ramsey theorem that such queries cannot define arbitrary tournaments.

An extended version of this work with fully detailed proofs can be found in [22].

Next steps A natural next step in this line of research is to establish that with UCQ-rewritable

rule sets, one cannot define structures of arbitrarily high chromatic number without entailing

the LoopE query:

Conjecture 4. For every signature S, every UCQ-rewritable rule set ℛ over S, and every instance
ℐ , we have:

𝐶ℎ(ℐ,ℛ)|E cannot be colored with a finite number of colors ⇒ 𝐶ℎ(ℐ,ℛ) |= LoopE.

We believe that this conjecture, if proven, would constitute an elegant model-theoretic

property of UCQ-rewritable rule sets and represent a significant step toward proving the (bdd

⇒fc) conjecture. Let us elaborate. Similar to the results presented in this paper, if Conjecture 4

holds, it would eliminate a substantial portion of the potential counterexample space: any

structure that cannot be colored with a finite number of colors cannot be homomorphically

embedded into a finite structure that does not entail LoopE.

Our hope is that the tools developed throughout this paper will serve as a foundation for

the proof of Conjecture 4. However, we note that such a proof would not be a straightforward

extension of the techniques developed in this paper. The current proof aims at showing existence

of four-tournament witnessed by a single valley query. We know, however, that there exists

structures of arbitrarily high chromatic numbers that do not contain the four-clique:

Theorem 5 (Erdős [23]). There exist graphs with arbitrarily high girth and chromatic number.
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