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Abstract
We demonstrate a principled way to query semistructured data by integrating natural language processing

capabilities into knowledge graph generation. We instantiate RML mappings with LLM queries to extract

ontological terms from plain text. We evaluate our approach on pharmaceutical data in JSON format.
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1. Introduction

The Ontology-Based Data Access (OBDA) framework [1] has provided the theoretical foun-

dations for representing data stored in a database as a knowledge graph – a collection of facts

formulated using high-level concepts and relationships. A standard formalism for describing

knowledge graphs in practice is the Resource Description Framework (RDF) [2]. Once the data

has been represented as a knowledge graph, it can be analysed using a formal query language

with a well-defined semantics, for instance such as SPARQL, a standard query language for

RDF [3]. Importantly, for such structured data representations and query languages, there is a

guarantee that the answers are correct as long as the data is correct.

A crucial component of the OBDA framework is mappings, which declaratively specify how

knowledge graph entities should be populated from values found in the data. Historically

the prevailing database management systems were relational, so originally OBDA was used

to facilitate access to relational data and the mapping languages were only concerned with

relational data sources. R2RML, the RDB to RDF Mapping Language, was developed as a

W3C recommendation for specifying declarative mappings from relational databases to RDF

datasets [4]. With the advent of non-relational databases, the OBDA framework has been

extended to accommodate alternative data models [5, 6]. Likewise, in line with the general trend

of data in non-relational formats being widely available on the Web, an extension of R2RML

to support generic data sources has been under development, resulting in RML [7, 8], the RDF
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Mapping Language. RMLMapper is a library for generating knowledge graphs from various

data formats, including CSV, JSON, and XML [9].

Despite the recent advances in accommodating a wider range of data formats, a fundamental

assumption when generating knowledge graphs following the OBDA principle is that the data

are inherently structured. However, a significant portion of data available on the Internet

is, at best, semi-structured. As a running example, consider online databases that catalogue

medicines and information about them [10]. Notably, information such as the name of a drug

or its interactions with other drugs is structured. Other bits of information, though, may

come as unstructured text. For instance, “1 g, every 4–6 hours; maximum 4 g per day” is a

dosage information for paracetamol. In general, dosage instructions may come in a variety of

formats, even for the same drug, e.g., “1 g, every 4–6 hours, dose to be administered over 15

minutes; maximum 4 g per day”. Assuming a scenario where the goal is to extract a knowledge

graph from such a database in order to provide answers to pharmaceutical queries, the dosage

information would be expected to have a structured representation. This highlights the necessity

for extracting structured information from unstructured data.

The standard solution when dealing with unstructured data nowadays is to employ large

language models (LLMs)–natural language processing tools that excel at understanding and

generating language [11]. For instance, a state-of-the-art LLM would be capable of extracting

the dosage amount and recommended administration frequency from a dosage instruction

string as above. In the context of knowledge graph construction from text corpora, LLMs

have been used for named entity recognition, relation extraction, as well as for fact generation

[12, 13, 14, 15, 16, 17]. Despite the advances, however, the main challenge remains in terms

of factual correctness of the extracted assertions, due to the so-called hallucinations [18], the

consequence of LLMs being essentially statistical models outputting words that have high

probability of continuing the current phrase. A pure LLM-based solution to knowledge graph

construction, therefore, may not be acceptable in a high stakes application, where either the

generated knowledge graph would be expected to be factually correct, or the correctness of

query answers would need to be easily verifiable.

To combine the best of two worlds, the ability of LLMs to intelligently process arbitrary natural

language and the correctness guarantees associated with the OBDA approach, we propose

leveraging LLMs in a more surgical fashion. Namely our methodology involves integrating

LLM queries within the RML mappings, where the input to the LLM is computed by the source

part of a mapping rule and the output of the LLM is used to generate RDF terms. There are

several advantages of our approach over an end-to-end LLM solution, where pharmaceutical

queries are answered by an LLM directly over the data sources. First, the LLM is not used to

deal with information that is already structured and can be processed using the standard RML

rules. Second, the LLM is fed only short and focused snippets of text, thus reducing the risk of

confusing it. Finally, it allows for a more straightforward verification of the correctness of the

knowledge graph/query answers, as each fact generated by an LLM could be annotated with the

text used to extract it. To the best of our knowledge, this is the first such application of LLMs in

the OBDA context. The only other work that used LLMs within the OBDA framework employed

LLMs to generate mappings automatically [19]. Other information extraction techniques have

been used to convert textual documents to structured representations [20, 21], however these

techniques are less powerful than LLMs.



We instantiate and evaluate our approach on a Medicines Information (MI) use-case. We use

a small JSON dataset created to mimic the existing online MI datasets and a number of SPARQL

queries. We compare our approach to the pure LLM-based solution and to the pure RML-based

solution. We assess the correctness and completeness of the resulting knowledge graphs and

of the query answers. Our experiments show that integrating LLMs into RML results in fewer

hallucinations than the pure LLM solution, and as expected, makes more information available

for structured processing comparing to the pure RML solution.

2. Preliminaries

Knowledge Graphs. A Knowledge Graph (KG) is a structured representation of information in

the form of a graph, where nodes represent entities of interest, and edges represent the semantic

relationships between those entities. The Resource Description Framework (RDF) is a W3C-

standard model for data interchange on the Web and serves as the foundational representation

format for specifying Knowledge Graphs (KGs). In RDF, knowledge is encoded as a set of triples

of the form (𝑠 𝑝 𝑜), where 𝑠 denotes the subject, 𝑝 the predicate, and 𝑜 the object. The subject

𝑠 is either an Internationalized Resource Identifier (IRI) or a blank node1
, the predicate 𝑝 is

an IRI specifying the relationship, and the object 𝑜 is an IRI, a blank node, or a literal2
. For

example, the triple :aspirin :usage :indication1 expresses that the drug aspirin has usage

for an indication identified by the :indication1 IRI, whereas the triple :dosage1 :amount

"100"^^xsd:decimal states that the amount for the dosage entity :dosage1 is 100, where

"100"^^xsd:decimal is an RDF literal with an associated datatype. An RDF graph is a finite

set of RDF triples. SPARQL is a standard query language for RDF [3].

Knowledge graph extraction from data. In traditional OBDA, one provides access to an

(external) relational database (DB) through an ontology, which is connected to the DB by means

of mappings. Given a DB schema 𝒮 and an ontology 𝒯 , a (GAV) mapping assertion between 𝒮
and 𝒯 is an expression of the form 𝑞(𝑥⃗)⇝ 𝜏(𝑥⃗) where 𝑞(𝑥⃗) is a (SQL) query over 𝒮 , also called

the source query, and 𝜏(𝑥⃗) an RDF triple template over 𝒯 , also called the target query. A triple

template (𝑓(𝑥⃗) rdf:type 𝐴), for a class name 𝐴 in 𝒯 and a template function 𝑓 , asserts that

the IRI computed as 𝑓(𝑥⃗) is an instance of 𝐴, whereas (𝑓(𝑥⃗) 𝑃 𝑓 ′(𝑥⃗)), for a property name 𝑃
in 𝒯 , asserts that 𝑓(𝑥⃗) is connected to 𝑓 ′(𝑥⃗) via 𝑃 . Note that template functions are used to

build IRIs, literals, or blank-nodes in an RDF triple.

Given a database instance 𝐷 of 𝒮 and a set ℳ of mapping assertions between 𝒮 and 𝒯 , we

denote by ℳ(𝐷) the KG generated by ℳ from 𝐷 (which is an RDF graph):

{(𝑓(𝑜⃗) rdf:type 𝐴) | 𝑜⃗ ∈ ans(𝜓,𝐷) and 𝜓 ⇝ (𝑓(𝑥⃗) rdf:type 𝐴) is in ℳ}∪
{(𝑓(𝑜⃗) 𝑃 𝑓 ′(𝑜⃗)) | 𝑜⃗ ∈ ans(𝜓,𝐷) and 𝜓 ⇝ (𝑓(𝑥⃗) 𝑃 𝑓 ′(𝑥⃗)) is in ℳ}.

In this paper, we follow the materialisation approach to query answering, i.e., SPARQL queries

are answered by a triplestore into which the generated KG is loaded (i.e., materialised). This is

mainly motivated by the fact that the data sources we target (such as online databases with API

access to JSON files) might not support arbitrary queries.

1

An unnamed resource

2

A concrete data value such as a string, number, or date



RML is a flexible, declarative language designed for specifying (GAV) mappings from heteroge-

neous data sources to RDF. Building on R2RML, it extends support beyond relational databases

to handle JSON, XML, and CSV formats. Its modular architecture [22] includes the RML-core
module

3
, which inherits the core mechanisms of R2RML for RDF triple generation, and the

RML-IO module
4
, which enables access to diverse data sources by defining logical sources and

providing a relational abstraction for them.

The use of LLM queries in RML mappings is possible thanks to the RML-FNML module
5
,

which enables the specification of user-defined functions within triple maps (i.e., in the target

of GAV-style mappings). We can distinguish between two disjoint classes of function symbols:

(i) uninterpreted function symbols (e.g., IRI templates), and (ii) function symbols with associated

semantics (e.g., concat computing the concatenation of two strings, or an LLM query).

For conciseness and readability, throughout the paper, we adopt the mapping language

of Ontop, a popular Virtual Knowledge Graph system [23], for concrete examples of (RML)

mapping rules. This language closely aligns with the abstract syntax introduced in the previous

section. Below is an example of a mapping assertion in this syntax:

source SELECT m_id, name FROM medicines
target :med-{m_id} rdf:type :Drug .

:med-{m_id} :prefLabel {name} .

This example corresponds to two GAV-style mapping assertions. The template :med-{m_id}
denotes an uninterpreted unary function symbol applied to the database attribute m_id, while

:Drug and :prefLabel are IRIs in the target RDF graph. Assuming a database instance

where the SQL query in the source clause returns the tuple (m_id ↦→ "001-100", name ↦→
"Amoxicillin"), the mapping generates the following RDF triples

6
:

:med-001-100 rdf:type :Drug .
:med-001-100 :prefLabel "Amoxicillin" .

3. LLM-Enhanced Mappings with RML

The novel idea of this paper is to integrate LLMs into OBDA mappings so as to extract more

structured information from semi-structured data. Our approach leverages the expressiveness

of the RML-FNML module, which permits the specification of arbitrarily complex user-defined

functions within mapping assertions. This integration enables the dynamic extraction of

structured facts from unstructured fields at mapping time, while preserving the declarative

nature of RML mappings. In this section we present it conceptually. Then in Section 4 we

instantiate it on a medicines information use-case.

To begin with, we define a logical source 𝑆 over the raw data (JSON documents in our case).

For our purposes, 𝑆 can be viewed as an instance of a relation over a fixed schema, where the

attributes correspond to references specified in the RML mappings for 𝑆. In 𝑆, we distinguish

structured attributes, the values of which can be directly mapped to RDF terms using standard

3

https://kg-construct.github.io/rml-core/ontology/documentation/index-en.html

4

https://kg-construct.github.io/rml-io/ontology/documentation/index-en.html

5

https://kg-construct.github.io/rml-fnml/ontology/documentation/index-en.html

6

Expressed in Turtle syntax (https://www.w3.org/TR/turtle/).
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RML templates, and unstructured attributes, the values of which are free-text fields in natural

language, so may require natural language processing to meaningfully map them to RDF terms.

We assume a fixed LLM Λ. For simplicity, we abstract it as a total deterministic function

from strings to strings, where Λ(𝑠) denotes the output of Λ on an input string 𝑠. Furthermore,

we introduce a number of user-defined function symbols, such as getAnswerFromLLM and

getFloatFromLLM, with semantics parameterised by Λ. These function names are interpreted

by querying Λ and then extracting the answer of the expected type from the output of Λ. For

example, assuming that toJSONObject converts a string to a JSON object, the output of Λ is

of the form “{"answer": ". . . "}”, and for a JSON object 𝑜 = {𝑘 : 𝑣}, the expression 𝑜.𝑘
evaluates to 𝑣, the semantics of getAnswerFromLLM on a string 𝑠 can be defined as:

getAnswerFromLLMΛ(𝑠) := toJSONObject( Λ(𝑠) ).answer

Now, for each property 𝑃 the value of which should be extracted from an unstructured at-

tribute𝑈 , we assume to have a prompt template 𝜋𝑃 —an instruction string or a few-shot example.

Then the expression

getAnswerFromLLM( concat(𝜋𝑃 , 𝑈) )

may appear as a term in the target of a mapping assertion for 𝑃 . Its semantics is as one would

expect, with 𝑈 evaluating to the textual content of attribute 𝑈 for a given tuple in 𝑆.

Finally, the definition of the generated KG ℳ(𝐷) should be extended to take into account Λ.

It is straightforward to do so; we omit it due to the lack of space.

Example Suppose 𝑆 contains an attribute doseInfo and we want to extract from it the value

for property hasDoseAmount. This can be done in an RML triple pattern of the form:

:med-{m_id} :hasDoseAmount getAnswerFromLLM(concat(PROMPT, {doseInfo})) .

where PROMPT is the string :

Produce output as a JSON string of format {"answer": DOSAGE_AMOUNT}.
Extract dosage amount:

For a value “1 g, every 4–6 hours; maximum 4 g per day” of doseInfo and 001-100 of a

structured attribute m_id, the generated RDF triple could be:

:med-001-100 :hasDoseAmount "1" .

4. Medicines Information Use-Case with LLM-Enhanced RML

In this section we demonstrate our approach on a medicines information use-case. We start

with a motivation for the use-case in Section 4.1 and then in Section 4.2 describe our full OBDA

setup. All our artefacts and code can be found at https://github.com/pharmaKG/rmlai.

4.1. Medicines Information

Annually, there is an estimated 66 million medication errors occurring within the NHS that are

harmful to patients. Each year, avoidable adverse drug events are estimated to cause or contribute

to a thousand deaths [24]. The use and application of medicines are often complex, requiring

choosing the right drug, its dosage, administration modality and considering interaction with the

https://github.com/pharmaKG/rmlai


{
"identifier": "apixaban",
"title": "Apixaban",
"breastFeeding": {

"specificInfo": "A risk cannot be excluded: animal studies shows presence in milk."
},
...
"sideEffects": {

"specificInfo": "Common: haemorrhage, contusion, epistaxis, haematoma. Uncommon:
thrombocytopenia, hypotension, post procedural haematoma."

},
"therapeuticPlan": [{

"indications": ["Treatment of deep-vein thrombosis", "Treatment of pulmonary embolism"],
"dosages": [{

"id": "4b59244d-c27d-4be2-a954-6a793f1c7cb0",
"patientGroup": "adult",
"detailedPatientGroup": "Adult",
"doseInfo": "10 mg taken twice daily for 7 days.",
"routeOfAdministration": "By mouth"

}]
}]

}

Figure 1: A fragment of the JSON document about Apixaban from our dataset.

existing treatments or conditions [25]. For instance, a nurse may need to know if a medication

can be administered through a nasogastric tube or if a particular drug is safe to use while

breastfeeding. A consultant might inquire about the occurrence of rare side effects.

To ensure proper use of medicines, medicines information (MI) departments exist to assist

healthcare staff and patients with their queries [26]. When an MI department receives a query,

it is their responsibility to sift through a number of dedicated online databases [10, 27, 28] to

find accurate answers, which then should be compiled into a document including all relevant

references. A limitation of this manual process is that even for relatively straightforward

questions, it requires significant time, as each database must be reviewed individually, and the

answer must be properly collated and referenced.

Automating the MI delivery service, at least for basic enquiries, has the potential to reduce the

number of medication errors by providing access to timely and accurate medicines information

to health professionals. We demonstrate how our approach can be used towards this automation

when the medicines data comes as semi-structured information in JSON format. Our idea is

to extract a KG from the data using OBDA mappings, so that answering MI enquiries would

amount to answering SPARQL queries over the extracted KG.

4.2. The OBDA Setup

We describe our OBDA instantiation of the medicines information use-case.

Data. We assume that information about drugs is available in JSON format, where some part of

information is structured, while some information is given in the form of plain text, similarly to

the online databases such as BNF [10] and EMC [27]. For the experiments, we created JSON

documents, each stored in a separate file on the local file system, about 20 drugs providing (a

subset of) information on their usage (including patient group, indications, dosage, frequency),



interactingDrug

2

Drug

+ prefLabel: string (1)
+ sideEffect: string (0..n)
+ sideEffectDesc: string (0..1)

usage 1..n

Usage

+ indication: string (0..1)
+ patientCondition: string
+ safetyLevel: string (1)
+ description: string (0..1)

Dosage

+ route: string (0..n)
+ description: string (0..1)
+ amount: decimal (0..1)
+ unit: string (0..1)
+ frequency: decimal (0..1)
+ duration: xs:duration (0..1)
+ group: string (1)
+ patientGroupDesc: string (0..1)
+ minAge: decimal (0..1)
+ maxAge: decimal (0..1)
+ ageUnit: string (0..1)
+ minWeight: decimal (0..1)
+ maxWeight: decimal (0..1)
+ weightUnit: string (0..1)
+ gender: string (0..1)

interactionDetail 1..n

DrugInteraction InteractionDetail

+ severity: string (0..1)
+ evidence: string (0..1)
+ description: string (0..1)

dosage 0..n

Figure 2: The UML class diagram for the Medicines Information ontology.

side-effects, as well as advice for patients that are breastfeeding, pregnant, or have hepatic or

renal impairment.

A fragment of one of such documents is shown in Figure 1. Here, the route of administration

in dosages is structured, given that it takes one of the possible values, “By mouth”. However

the dosage amount and frequency are stated in one string “10 mg taken twice daily for 7 days”.

Advice for special categories of patients and the side effects are unstructured as well.

We note that for the sake of our small scale experiment, there is always at most one entry in

the therapeutic plan and at most one entry in dosages. This does not restrict the scope of our

methodology. Also, we created auxiliary identifiers at various levels of the JSON documents to

simplify the subsequent linking of different entities (see, e.g., the id field inside dosages).

Ontology. We built a simple ontology to capture the data in our dataset along with a SHACL

file that defines the schema of a valid RDF graph. There are 5 classes and 24 properties, see

Figure 2 for an overview. For every drug there may be several usages, one for each indication

and patient condition. Usually, one usage is reserved for patients without special conditions.

Further, there may be up to 4 different usage instances: for pregnant, breastfeeding and patients

with hepatic or renal impairment. These typically include a safety advice. Then, each usage is

associated with dosage instances, one for each patient group. Dosage information includes the

route of administration, the amount, unit, frequency and duration of the dosage, as well as the

information pertaining to the patient group such as gender and the age and weight ranges.

Note that the values for properties highlighted in bold are those that need to be extracted

from unstructured text. We refer to those properties as LLM-extracted properties. All IRIs and

the rest of the values can be extracted directly from JSON. We refer to properties the value

for which could be mapped directly from JSON as immediately accessible. When an entity has

LLM-extracted properties, the original unstructured string is stored in one of the description
or xxxDesc properties.

Mappings We created RML mapping rules for all our classes and properties. For each class and



immediately accessible property, we created standard rules. For each LLM-extracted property,

the mapping rule involves a call to a user-defined function implementing an LLM query. For

sideEffect and safetyLevel prompts, we adopted a zero-shot prompting strategy, while

for the remaining properties a few-shot prompting strategy, where each prompt included few

examples consisting of an input and its corresponding expected output. The choice of the

strategy was made based on initial testing; a more thorough evaluation of different prompting

strategies could be included in a future work.

Below we provide mapping rules for the Dosage class, the route and amount properties

(instantiated for apixaban). For readability, we present them using the more concise Ontop-like

notation:

source json_to_table("$.therapeuticPlan[*].dosages[*]", apixaban.json)

target http://drug.uk/dosage/{id} rdf:type drug:Dosage ;
drug:route {routeOfAdministration};
drug:amount grel:getFloatFromLLM(

grel:concat(DOSAGE_PROMPT, {doseInfo})
) .

The source declaration in the first line essentially creates a relation with the attributes

(id, patientGroup, detailedPatientGroup, doseInfo, routeOfAdministration), through a

JSON-path
7

query over the file “apixaban.json”. Each tuple in this relation corresponds to

an element of the dosages array (see Figure 1). In the target part, the first two rules are

standard R2RML/RML rules. The rule for the amount property states that the object value is

computed as grel:getFloatFromLLM(𝑝), where

∙ 𝑝 is the string obtained as the concatenation of the fixed string DOSAGE_PROMPT with the

value of doseInfo.

∙ grel:getFloatFromLLM is a user-defined function returning a decimal number. Its defini-

tion is provided in the functions.ttl file that defines standard and custom functions used

within RML mapping rules to transform, enrich or filter data during the mapping process. In

particular, this file specifies the Java class and the name of the method within it implementing

the actual call to the LLM and extraction of the floating point value from its reply.

∙ DOSAGE_PROMPT is the following prompt template:

task: Extract dosage amount from the provided text.
output: a json string of format: {"response": DOSAGE_AMOUNT}. DO NOT RETURN ADDITIONAL EXPLANATIONS

OR TEXT OR MARKDOWN FORMATTING. Only JSON as string.
rule: DOSAGE_AMOUNT is a float value. And it should be a valid xsd:decimal. If no relevant

information is found in the text, DOSAGE_AMOUNT is null. Do not put null within double quotes.
example: if the text says 50mg daily, DOSAGE_AMOUNT is 50. if it says 50mg in 2 divided dose, as 50

divided by 2 is 25, DOSAGE_AMOUNT is 25. if text says apply 1 millimeter, DOSAGE_AMOUNT is 1.
text:

5. Evaluation

In this section we evaluate our approach in terms of correctness of the generated knowledge

graph and of the answers to SPARQL queries over this graph. For all experiments, we employed

7

https://en.wikipedia.org/wiki/JSONPath

https://en.wikipedia.org/wiki/JSONPath


DeepSeek-7b DeepSeek-14b DeepSeek-32b

Number and ratios of errors 237 / 0.25% / 0.16% 50 / 0.05% / 0.003% 53 / 0.05% / 0.003%

Generation time 13min 20min 40min

safetyLevel / 80 22 3 9
amount / 19 2 1 1

unit / 19 2 2 1
frequency / 18 2 1 1

duration / 19 6 2 2
sideEffect / 790 203 41 39

Table 1
Error number, ratio of errors out of extracted values and out of all RDF triples in the generated RDF
graph, and the generation time, per LLM (1 run). We also show the breakdown of errors per property;
the number of values to be extracted is shown next to the property name.

three versions of varying sizes of DeepSeek-R1-Distill-Qwen, an open-source LLM with rea-

soning capabilities [29], with 7, 14 and 32 billion parameters. We chose these models because

they could be installed and run locally, whereas their increasing sizes allowed us to explore the

trade-off between their computational cost and performance. All experiments were run on Intel

Xeon Gold 5317 CPU with 32 cores and NVIDIA A100 GPU with 80GB memory.

5.1. Correctness of the Generated Knowledge Graph

We report our findings on the quality of the KGs generated using our OBDA setup, RMLMapper

v7.3.3, and the three LLMs.

For each LLM, we repeated the KG generation process three times to account for possible

differences in its outputs. Since for our tasks we were interested in a more deterministic

behaviour of the LLMs, we set the temperature parameter to 0. Typically, lower values of the

temperature parameter correspond to more deterministic behaviours of LLMs: 0 forces an LLM

to output a word with the highest probability. In our experiments, this ensured that all three

runs for each LLM were identical. In what follows, all statistics refer to one run for an LLM.

We now discuss the correctness of the LLM-extracted values (the ground truth was established

manually). Across 20 drugs, the total number of triples in the extracted RDF graph was 14,641.

Out of these, the object value of 963 triples was LLM-extracted. For each LLM, we summarise

the number and ratio of errors within LLM-extracted facts, as well as the ratio of errors in the

context of the complete RDF graph, and report the average generation time in Table 1. We

also present a breakdown of the errors per property together with the count of values to be

extracted using LLM. The smallest model performed worst (0.25% error rate for LLM-extracted

values and 0.16% error rate for the whole graph), and one run took around 13 minutes. The two

bigger models performed similarly (0.05% error rate for LLM-extracted values and 0.003% error

rate for the whole graph), while DeepSeek-14b was about twice faster than DeepSeek-32b.

We cautiously consider our approach to be successful at generating “almost correct” knowl-

edge graphs from semi-structured information: 50 errors in 14,641 facts amount to 0.003% error

rate. Although we do not include a comparison with a pure LLM-based solution (left for future



work), we conjecture that such a solution would either produce significantly more errors than

ours, or would require relying on more advanced, and hence more expensive, LLMs. Another

advantage of our solution is that it guarantees the conformance of the generated graph with the

ontology. For each LLM, the generated RDF graph has successfully passed SHACL validation for

the portion of the data available in our JSON dataset. Whereas a pure LLM-based solution may

produce RDF triples formulated using wrong vocabulary or not satisfying integrity constraints.

5.2. Answers to queries

We now evaluate our approach in terms of SPARQL query answers over the generated RDF

graphs, and compare it to three other solutions to accessing data: (i) SPARQL queries evaluated

over the KG generated using ‘standard’ (i.e., not LLM-enhanced) RML mappings, referred to

as SPARQL-over-RML-KG; (ii) Natural language queries answered by LLM, referred to as NL-

over-LLM; (iii) Natural language queries answered by LLM, each over a single JSON document,

referred to as NL-over-JSON. In NL-over-LLM, we are essentially probing the knowledge

acquired by LLM from the training data, while NL-over-JSON follows a RAG-like (retrieval

augmented generation) architecture, where LLM is expected to pull relevant information from

a provided document, a JSON document about a drug in our case.

We selected 28 queries, loosely based on actual MI enquiries, to be answerable over our

dataset. Each query is over a specific drug. The first 8 queries are expected to return one of

three values Yes, No or Unknown. The latter value should be returned when there is no evidence

to back up a positive or a negative answer. The remaining 20 queries ask the dosage amount

and unit for an indication, for each of the 20 drugs in our dataset. The correct answers were

determined by evaluating the queries of the ground truth graph.

We employed zero-shot prompting strategy for the LLM queries in NL-over-LLM and NL-over-

JSON. Based on our initial experiments, we asked LLMs to provide an answer in a structured

format. Below are the zero-shot instructions we used for the dosage queries:

Rule:
- Provide the answer in a structured plain text JSON format
- JSON should contain "dosage amount" and "dosage unit" as keys and their respective values.
- Do not include any additional information or explanation.
- Do not provide JSON in markdown formatting. Only provide plain text JSON.

For SPARQL-over-RML-KG, there were two correct Yes answers, all other answers were

Unknown since the relevant data was not accessible when using standard RML mappings. Six of

the unknown answers coincided with the ground truth, therefore we consider that SPARQL-

over-RML-KG returned 20 incorrect answers. As for the approaches involving calls to LLMs,

either for KG construction or for direct query answering, we summarise the numbers of incorrect

query answers in Table 2. Asking for answers directly from LLMs results in over 20 errors for

all three models. Providing LLMs relevant information in a JSON file reduces the number of

errors to 14 for the smallest, 8 for the medium and 6 for the largest models. The number of

errors in SPARQL query answers over the three generated graphs ranges from 3 for the smallest

LLM, to 2 for the medium and 1 for the largest one.

This simple comparison shows that our approach advances the existing work along two

dimensions. First, with respect to the standard RML mappings, our LLM-enhanced mappings

make more data accessible for structured query answering, whose benefits include better



DeepSeek-7b DeepSeek-14b DeepSeek-32b

NL-over-LLM 24 / 110s 21 / 180s 21 / 300s
NL-over-JSON 14 / 90s 8 / 150s 6 / 330s

SPARQL-over-RML-LLM-KG 3 2 1

Table 2
Number of incorrect query answers out of 28, per query answering approach and LLM. For the natural
language queries, we report the average time it took to answer all 28 queries with LLMs.

explainability of the answers. Second, providing LLMs with fine-grained context in LLM-

enhanced mappings can reduce the risk of incorrect answers, comparing to probing the implicit

knowledge of an LLM as in NL-over-LLM, or to providing a potentially much bigger context

as in NL-over-JSON. Finally, though not currently implemented, our approach allows for easy

verification of query answers, by providing to the user the original (relatively short) unstructured

text from which the values involved in deciding the query outcome were extracted. Arguably,

verification in this case is more straightforward than in NL-over-LLM or NL-over-JSON, where

the user would have to look at a whole (possibly quite large) JSON document.

6. Conclusions

In this paper, we presented a promising approach for generating Knowledge Graphs (KGs) from

semi-structured data by integrating LLM queries within RML mappings. Our method improves

correctness of query answers as opposed to an LLM-based solution to query answering, as

demonstrated through our preliminary experiments.

In the future, we plan to address the limitation of RMLMapper that prevents the simultaneous

extraction of semantically related property values, requiring each property to be extracted

individually. This may increase the risk of inconsistencies when these values are interpreted

collectively. For instance, “1 dose every 6 hours” is equivalent to “4 doses every day”. Therefore,

two different LLM queries might extract 1 as frequency and 1 as duration, resulting in an

incorrect pair. Moreover, this constraint increases the number of LLM queries, which in turn

increases the overall KG generation time. To address these issues, future work will explore

using LLMs in the source component of mapping assertions, e.g., by relying on the RML-LV

module
8
, which introduces the notion of logical views specifying virtual relational schemas over

data, and consequently allows for a two-stage mapping process.

In our experiments we materialised the whole KG. This would not be feasible in real life when

offering a fully-fledged solution to accessing online databases. Therefore, future work could

look into materialising only the portion of the KG relevant to answering the current query.
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